Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 40 issue 4 (december 2019) : 281-288

Genetic Transformation Methods for Crop Improvement- A Brief Review

C. Kavipriya, A. Yuvaraja, K. Senthil, C. Menaka
1Department of Plant Breeding and Genetics, Agricultural College and Research Institute, TNAU, Madurai-625 104, Tamil Nadu, India.
Cite article:- Kavipriya C., Yuvaraja A., Senthil K., Menaka C. (2019). Genetic Transformation Methods for Crop Improvement- A Brief Review. Agricultural Reviews. 40(4): 281-288. doi: 10.18805/ag.R-1904.
Decades of documented successful pieces of evidence in agritech have shown us a clear picture of the importance of biotechnology in crop improvement. The production in agriculture should have steady growth and to achieve these objective conventional methods should go on parallel with biotechnological approaches. Genetic engineering which has revolutionized the path of crop improvement involves the identification and transfer of novel genes into the existing elite cultivars. Different methods of transferring the gene into plant cells have been developed and continuous efforts have been made to increase its efficiency. Both direct and indirect method of gene transfer has its own merits and demerits. Efforts have been made continuously to eliminate drawbacks and to develop an easy, elite and eco-friendly method to transfer genes. The transformation method which is a base of genetic engineering is vital and Agrobacterium-mediated gene transfer and gene gun have shown to be doing well in recent years. As a whole the methodology involved, merits and demerits of different methods have been briefly discussed.
  1. Akowuah, E. F., Gray, C., Lawrie, A., Sheridan, P. J., Su, C. H., Bettinger, T., Newman, C. M. (2005). Ultrasound-    mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther. 12(14): 1154-1157. doi:10.1038/
  2. Anami, S., Njuguna, E., Coussens, G., Aesaert, S. and Van Lijsebettens, M. (2013). Higher plant transformation: principles and molecular tools. Int J Dev Biol. 57(6-8): 483-494.doi: 10.1387/ijdb.130232mv.
  3. Andres Cruz-Hernandez, L. T., Antonino Cavallaro and Jose Ramon Botella.). Transient and stable transformation in Mango by particle bombardment. Australia.
  4. Anna Nadolska-Orczk, k., Wactcm, Orczvk and Anna Ptvetakiewicz (2000). Agrobacterium-mediated transformation of cereals- from technique development to its application Acta Physiologiae Plantarum. 22: 77-88. 
  5. Baskaran, P. and Dasgupta, I. (2011). Gene delivery using microinjection of Agrobacterium to embryonic shoot apical meristem of elite indica rice cultivars. Journal of Plant Biochemistry and Biotechnology. 21(2): 268-274. doi:10.1007/s13562-    011-0078-x.
  6. BoucHEZ, N. B. a. D. (1995). In Planta Agrobacterium-Mediated Transformation of Adult Arabidopsis thaliana Plants by Vacuum Infiltration. Gene Transfer to Plants. 
  7. Chailertvanitkul, V. A. and Pouton, C. W. (2010). Adenovirus: a blueprint for non-viral gene delivery. Curr Opin Biotechnol. 21(5): 627-632. doi:10.1016/j.copbio.2010.06.011.
  8. Christine Desfeux, S. J. C. and Andrew F. Bent2*. (2000). Female reproductive Tissues Are the Primary Target of Agrobacterium -Mediated Transformation by the Arabidopsis Floral-Dip Method1. Plant Physiol. 123: 895-900. 
  9. Cochran, M. and Wheatley, M. A. (2013). In vitro gene delivery with ultrasound-triggered polymer microbubbles. Ultrasound Med Biol. 39(6): 1102-1119. doi:10.1016/j.ultrasmedbio. 2013. 01.013.
  10. Du, X., Wang, J., Zhou, Q., Zhang, L., Wang, S., Zhang, Z. and Yao, C. (2018). Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv. 25(1): 1516-1525. doi:10.1080/10717544.2018.1480674.
  11. Fiandaca, M. S. and Federoff, H. J. (2014). Using viral-mediated gene delivery to model Parkinson’s disease: don onhuman primate investigations expand our understanding? Exp Neurol. 256: 117-125. doi:10.1016/j.expneurol.2013.03. 014.
  12. Frame, B. R., McMurray, J. M., Fonger, T. M., Main, M. L., Taylor, K. W., Torney, F. J., Wang, K. (2006). Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep. 25(10): 1024-    1034. doi:10.1007/s00299-006-0145-2.
  13. Guo, H., Hao, R., Wei, Y., Sun, D., Sun, S. and Zhang, Z. (2012). Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol. 245 (12): 789-795. doi:10.1007/s00232-012-9480-0.
  14. Guo, M., Ye, J., Gao, D., Xu, N. and Yang, J. (2019). Agrobacterium-    mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv. 37(1): 259-270. doi:10.1016/j. biotechadv.2018.12.008.
  15. Henshaw, J. W., Zaharoff, D. A., Mossop, B. J. and Yuan, F. (2006). A single molecule detection method for understanding mechanisms of electric field-mediated interstitial transport of genes. Bioelectrochemistry. 69(2): 248-253. doi:10. 1016/j.bioelechem.2006.03.006.
  16. Hosokawa, Y., Iguchi, S., Yasukuni, R., Hiraki, Y., Shukunami, C. and Masuhara, H. (2009). Gene delivery process in a single animal cell after femtosecond laser microinjection. Applied Surface Science. 255(24): 9880-9884. doi:10. 1016/j.apsusc.2009.04.111.
  17. Ismagul, A., Yang, N., Maltseva, E., Iskakova, G., Mazonka, I., Skiba, Y., Langridge, P. (2018). A biolistic method for high-    throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol. 18(1): 135. doi:10.1186/s12870-018-1326-1.
  18. Jeu, M. J. D. (2000). Invitro techniques for ornamental breeding Acta Hort. 508: 55-60. 
  19. Jinturkar, K. A., Rathi, M. N. and Misra, A. (2011). Gene Delivery Using Physical Methods. In Challenges in Delivery of Therapeutic Genomics and Proteomics (pp. 83-126).
  20. John O’Brien, S. C. R. L. (2002). An improved method of preparing microcarriers for biolistic transfection. Brain Research Protocols. 10: 12–15. 
  21. Kim, J. A., Lee, W. G. and Jung, N. C. (2010). Enhanced electro-    mediated gene delivery using carrier genes.Bioelectro chemistry. 78(2): 186-190. doi:10.1016/j.bioelechem. 2009.08.012.
  22. Kulkarni, M., Greiser, U., O’Brien, T. and Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 28(1): 28-36. doi:10.1016/j.tibtech. 2009.10.003.
  23. Lacroix, B. and Citovsky, V. (2018). Beyond Agrobacterium-    Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Curr Top Microbiol Immunol. 418: 443-462. doi:10.1007/82_2018_82.
  24. Lazzeri, S. R.-G. A. R. P. B. P. A. (1999). Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Reports. 19: 118–127. 
  25. Liu, J., Nannas, N. J., Fu, F. F., Shi, J., Aspinwall, B., Parrott, W. A. and Dawe, R. K. (2019). Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize. Plant Cell. 31(2): 368-383. doi:10.1105/tpc.18.00613.
  26. Liu, Y. C. and Vidali, L. (2011). Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. J Vis Exp(50). doi:10.3791/2560.
  27. Markelc, B., Bellard, E., Sersa, G., Pelofy, S., Teissie, J., Coer, A., Cemazar, M. (2012). In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol. 245(9): 545-554. doi:10.1007/s00232-012-9435-5.
  28. Meyer, T., Renoud, S., Vigouroux, A., Miomandre, A., Gaillard, V., Kerzaon, I.,Lavire, C. (2018). Regulation of Hydroxycinnamic Acid Degradation Drives Agrobacterium fabrum Lifestyles. Mol Plant Microbe Interact. 31(8): 814-822. doi:10.1094/    MPMI-10-17-0236-R.
  29. Mullins, D. S. R. a. E. (2018). Alternative non-agrobacterium based methods for plant transformation Annual Plant Reviews. 1: 1-17. doi:10.1002/9781119312994.apra065.
  30. Munye, M. M., Ravi, J., Tagalakis, A. D., McCarthy, D., Ryadnov, M. G. and Hart, S. L. (2015). Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep. 5: 9292. doi:10.1038/    srep09292.
  31. Nester, E. W. (2014). Agrobacterium: nature’s genetic engineer. Front Plant Sci. 5: 730. doi:10.3389/fpls.2014.00730.
  32. O’Brien, J. A. and Lummis, S. C. (2011). Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol. 11: 66. doi:10.1186/1472-6750-11-66.
  33. Patel, D. H. and Misra, A. (2011). Gene Delivery Using Viral Vectors. In Challenges in Delivery of Therapeutic Genomics and Proteomics (pp. 207-270).
  34. Q-R Chen, L. Z., SA Stass and AJ Mixson. (2000). Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Therapy. 7: 1698–1705. 
  35. Que, Q., Chilton, M. M., Elumalai, S., Zhong, H., Dong, S. and Shi, L. (2019). Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering. Methods Mol Biol. 1864: 3-18. doi:10.1007/978-1-4939-8778-8_1.
  36. Rajasekaran, K. (2013). Biolistic transformation of cotton zygotic embryo meristem. Methods Mol Biol. 958: 47-57. doi:10. 1007/978-1-62703-212-4_4.
  37. Robert J. Klebe, J. V. H., Z. Dave Sharp and Michael G. Douglas (1983). A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast Gene. 25: 333-341. 
  38. Sahab, S., Hayden, M. J., Mason, J. and Spangenberg, G. (2019). Mesophyll Protoplasts and PEG-Mediated Transfections: Transient Assays and Generation of Stable Transgenic Canola Plants. Methods Mol Biol. 1864: 131-152. doi:10.1007/978-1-4939-8778-8_10.
  39. Saito, H. M. A. M. (2005). High Throughput Microinjection Technology toward Single-cell Bioelectrochemistry. Electrochemistry. 74: 12-18. 
  40. Saliba, Y., Mougenot, N., Jacquet, A., Atassi, F., Hatem, S., Fares, N. and Lompre, A. M. (2012). A new method of ultrasonic nonviral gene delivery to the adult myocardium. J Mol Cell Cardiol, 53(6): 801-808. doi:10.1016/j.yjmcc.2012. 07.016.
  41. Simon, M. and Foroughi-Wehr, B. (2000). Inhibition of Extracellular DNase Activity of Barley Microspores in the Presence of Polyethylene Glycol and Silicon Carbide Fibers. Journal of Plant Physiology. 156(2): 184-189. doi:10.1016/s0176-1617(00)80304-1.
  42. Skokut, J. F. P. N. L. H. B. D. K. M. (1999). Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Reports. 19: 781–786. 
  43. Slater, S. C., Goldman, B. S., Goodner, B., Setubal, J. C., Farrand, S. K., Nester, E. W., Wood, D. W. (2009). Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria. Journal of Bacteriology. 191(8): 2501-2511. doi:10.1128/jb.01779-08.
  44. Stephen G. Rogers, R. B. H. and Robert T. Fraley (1986). Gene Transfer in Plants: Production of Transformed Plants Using Ti Plasmid Vectors. Methods In Enzymoi.Ogy. 118: 627-640. 
  45. Toth, S., Kiss, C., Scott, P., Kovacs, G., Sorvari, S. and Toldi, O. (2006). Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell Rep. 25(5): 442-449. doi:10.1007/s00299-005-0083-4.
  46. Wang, H. Y. and Lu, C. (2006). High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol Bioeng. 95(6): 1116-    1125. doi:10.1002/bit.21066.
  47. Weiwei Wang, W. L., Nan Ma1 and Gustav Steinhoff. (2013). Non-    Viral Gene Delivery Methods Current Pharmaceutical Biotechnology. 14: 46-60. 
  48. Wilkins, T. A., Rajasekaran, K. and Anderson, D. M. (2010). Cotton Biotechnology. Critical Reviews in Plant Sciences. 19(6): 511-550. doi:10.1080/07352680091139286.
  49. Wright, G. H. a. M. S. (1999). Recent advances in the transformation of plants. Trends in plant science. 4: 226-231. 
  50. Yoshito Asano a, Y. O. b. a. M. U. c. (1991). Electroporation-    mediated and silicon carbide fiber-mediated DNA delivery in Agrostis alba L. (Redtop). Plant Science. 79: 247-252. 
  51. Young, J. L. and Dean, D. A. (2015). Electroporation-mediated gene delivery. Adv Genet. 89: 49-88. doi:10.1016/bs.adgen. 2014.10.003.
  52. Yu, J., Chen, Z. and Yan, F. (2019). Advances in mechanism studies on ultrasonic gene delivery at cellular level. Prog Biophys Mol Biol. 142: 1-9. doi:10.1016/j.pbiomolbio.2018.07.012.
  53. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. and Chua, N. H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 1(2): 641-646. doi:10.1038/nprot.2006.97.

Editorial Board

View all (0)