Three- dimensional reconstruction of the thorax in the mongoose (Herpestes ichneumon)

DOI: 10.18805/ijar.B-872    | Article Id: B-872 | Page : 1578-1582
Citation :- Three- dimensional reconstruction of the thorax in the mongoose(Herpestes ichneumon).Indian Journal Of Animal Research.2018.(52):1578-1582
Sema Ozkadif, Ayse Haligur and Emrullah Eken semaerten80@gmail.com
Address : Department of Anatomy, Faculty of Ceyhan Veterinary Medicine, University of Cukurova, Ceyhan-Adana, Turkey
Submitted Date : 5-12-2017
Accepted Date : 5-03-2018

Abstract

Three- dimensional (3D) reconstruction obtained by using multidetector computed tomography (MDCT) images have widely been used in anatomical studies. Thorax is one of the most important body cavities necessary for the protection of lungs and heart in mammals. Two adult mongooses (1 male, 1 female) obtained from traffic accidents were used in this study. The images obtained from MDCT were stacked and 3D reconstruction of thorax was performed by overlaying images using a 3D modeling software (Mimics 13.1). Some measurements of thoracic cavity, lungs and sternum were taken from the reconstructive images of mongoose and indexes were calculated from these measurements. The morphometric parameters were recorded for both sexes. From the study, it could be concluded that the thoracic cavity, lungs and sternum imagings and findings revealed by 3D modeling techniques can be utilized for anatomical training of wild animals.  This study is expected to help in the diagnosis and treatment of thorax diseases in wild animals.

Keywords

Biometry Carnivore Skeleton 3D imaging.

References

  1. Akaydin Bozkurt, Y., Ateþ, S., Kozlu, T., Baþak, F. (2017). The architecture of the lymph nodes in the abdominal and thoracic cavities of wild boar. Indian Journal of Animal Research, DOI: 10.18805/ijar.B-759.
  2. Alumeri, S.K.W., Al-Mamoori, N.A.M., Al-Bishtue, A.H. (2013). Grossly and microscopic study of the primary bronchi and lungs of wood pigeon (Columba palumbus). Kufa Journal for Veterinary Medical Sciences, 4: 72-79.
  3. Alves, F.R., Costa, F.B., Machado, P.P., Diniz, A.N., Araújo, A.V.C., Ambrósio ,C.E., Guerra, P.C. (2012). Anatomical and radiographic appearance of the capuchin monkey thoracic cavity (Cebus apella). Pesquisa Veterinária Brasileira, 32 :1345-1350.
  4. Amabile, C., Choisne, J., Nérot, A., Pillet, H., Skalli, W. (2016). Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling. Journal of Biomechanics, 49: 1162–1169.
  5. Aspinall, V. (2004). Anatomy and physiology of the dog and cat 7. The respiratory system. Veterinary Nursing Journal, 19: 54-59.
  6. Atay, E. and Yesiloglu, M. (2012). The Egyptian mongoose, Herpestes ichneumon L., 1758 (Mammalia: Carnivora: Herpestidae) in Hatay province Turkey. The Black Sea Journal of Sciences, 2: 74-81.
  7. Dayan, M.O. and Besoluk, K. (2011). Three dimensional reconstruction from computed tomography images of respiratory system in New Zealand rabbits. Eurasian Journal of Veterianry Sciences, 27: 145-148.
  8. Demirsoy, A. (2003). Yaþamýn Temel Kurallarý. Omurgalýlar/Amniyota (Sürüngenler, Kuþlar ve Memeliler). Cilt- III/ Kýsým- II. (5th Edn). Meteksan A.S., Ankara. pp.766. 
  9. Dursun, N. (2006). Veteriner Anatomi II. (10th Edn). Medisan Yayýnevi, Ankara. pp. 118-122. 
  10. Filho, P.P.R., Cortez, P.C., Albuquerque, V.H.C. (2013). 3D segmentation and visualization of lung and its structures using CT images of the thorax. Journal of Biomedical Science and Engineering, 6: 1099-1108.
  11. Goswami, A., Milne, N., Wroe, S. (2011). Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society B, 278: 1831–1839.
  12. Guyton, A.G. (1986). Textbook of Medical Physiology. (7th Edn). Nobel Týp Kitabevi, Ýstanbul. pp. 675.
  13. Ibe, C.S., Onyeanusi, B.I., Salami, S.O., Umosen, A.D., Maidawa, S.M. (2008). Studies of the major respiratory pathways of the West African Guinea Fowl (Numida meleagris galeata): the morphometric and macroscopic aspects. International Journal of Poultry Science 7: 997-1000.
  14. Ivancic, M., Solano, M., Smith, C. (2014). Computed tomography and cross-sectional anatomy of the thorax of the live Bottlenose Dolphin (Tursiops truncatus). The Anatomical Record, 297: 901–915.
  15. Kalra, M.K., Maher, M.M., Toth, T.L., Hamberg, L.M., Blake, M.A., Shepard, J., Saini, S. (2004). Strategies for CT radiation dose optimization. Radiology 230: 619-28.
  16. Osborn, D. (1998). The Mammals of Ancient Egypt. Warminster: Aris and Phillips Ltd..Plesis, W.M. (2015). Computed tomography of the thorax and abdomen of the clinically normal common marmoset (Callithrix jacchus). University of Protoria, Africa, pp. 17-37.
  17. Prokop, M. (2003). General principles of MDCT. European Journal of Radiology 45: 4-10.
  18. Ramadan, S.V., Türkmen, N., Dolgun, N.A., Gökharman, D., Menezes, R.G., Kacar, M., Kosar, U. (2010). Sex determination from measurements of the sternum and fourth rib using multislice computed tomography of the chest. Forensýc Science International, 197: 120.e1–120.e5.
  19. Saber, A.S. and Basma, M.K. (2010). Computed Tomography and 3D Reconstruction of the Respiratory Organs of the Egyptian Tortoise (Testudo kleinmanni). Journal of Veterinary Anatomy, 3: 1-15.
  20. Samuel, M.O., Wanmi, N., Usende, L. (2016). Rostro-dorsal and rostro-lateral skull morphologic variability in three age-groups of the Egyptian mongoose (Herpestes ichneumon)(Linnaeus, 1758): Implications of certain orbital parameters-angular geometric approach. Folia Morphologica, 75: 527-535. 
  21. Schachner, E.R., Hutchinson, J.R., Farmer, C.G. (2013). Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ, DOI 10.7717/peerj.60. 1-30. 
  22. Selthofer, R., Nikolic, V, Mrcela T, Radic R., Leksan I, Rudez I, Selthofer K. (2006). Morhometric analysis of the sternum. Collegium Antropologicum, 30: 43-47.
  23. Singh, G. and Sharma, N. (2016). 3-D Visualization techniques for medical images: A comprehensive study. International Journal of Innovative Research in Computer and Communication Engineering, 4: 14321-14324.
  24. Smits, P.D. and Evans, A.R. (2012). Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology, 12: 146- 157.
  25. Sreeranjini, A.R., Ashok, N., Indu, V.R., Lucy, K.M., Maya, S., Chungath, J.J. (2015). Gross anatomical features of the sternum of green-winged macaw (Ara chloroptera). Indian Journal of Animal Research, 49: 860-862.
  26. Stan, F. (2015). Comparative Anatomical Study of Lungs in Domestic Rabbits (Oryctolagus cuniculus) and Guinea Pigs (Cavia porcellus). Bulletin University of Agriculture Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 72: 195-    196. 
  27. Szpinda, M., Siedlaczek, W., Szpinda, A., Wozniak, A., Mila-Kierzenkowska, C., Badura, M. (2015). Quantitative anatomy of the growing lungs in the human fetüs. BioMed Research International, http://dx.doi.org/10.1155/2015/362781. 1-10.
  28. Taylor, M.E. (1976). The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology, 148: 227-54.
  29. Zhang, R., Wang, H., Zeng, G. , Zhou, C., Pan, R. , Wang, Q., Li, J. (2016). Anatomical study of the ostrich (Struthio camelus) foot locomotor system. Indian Journal of Animal Research, 50: 476- 483 

Global Footprints