Effects of certain long-chain fatty acid combinations on the ruminal microbe species relating to fermentation type in vitro

DOI: 10.18805/ijar.B-802    | Article Id: B-802 | Page : 768-773
Citation :- Effects of certain long-chain fatty acid combinations on the ruminal microbe species relating to fermentation type in vitro.Indian Journal Of Animal Research.2019.(53):768-773
Y.J. Jing, Y.F. Wang, M.Z. Wang, J. Gao, J.L. Ouyang and L. Cheng mengzhiwangyz@126.com
Address : College of Animal Science and Technology, Yangzhou University, Jiangsu-225 009, P.R. China.
Submitted Date : 23-07-2017
Accepted Date : 20-12-2017

Abstract

This experiment was conducted to investigate the effects of certain long-chain fatty acid combinations on ruminal microbial community in vitro. Three cows fitted with permanent ruminal cannulas were used to provide rumen liquor for the in vitro trail. The treatments were fatty acid combinations of stearic acid, oleic acid, linoleic acid and linolenic acid, which respectively were group A (calcium palmitate, control), B (1.5%, 1.0%, 0.5% and 1.5%, acetic type fermentation), C (1.5%, 1.0%, 1.5% and 1.0%, propionic acid type fermentation), D (1.0%, 1.5%, 1.5% and 0.5%, butyric acid type fermentation). Three goats fitted with rumen cannula were used to provide the culture medium was collected for the measurement of the rumen microorganism in vitro culture. Culture medium was collected at 0, 3, 6, 12, 18 and 24 h. The results demonstrated that, except for Ruminococcus albus, all the other bacterial genus had significant differences between groups (P < 0.05). The Fibrobacter succinogenes and Ruminococcusflavefaciens, Clostridium proteoclasticum and Ruminobacter amylophilus were higher in group B; Butyrivibrio fibrisolvens, Megasphaera elsdenii and Ruminococcus bromii were higher in group C; while Pseudobutyrivibrio ruminis was higher in group D. Different higher species in different treatments described above related to their fermentation type. It was also observed that, bacteria were the dominant flora in rumen and Megasphaera elsdeniiwere the dominant species in bacterial fraction no matter what the treatment is. It was therefore concluded that, certain fatty acid combinations have remarkable effects on the amount of ruminal specific bacteria species,mainly related to their fermentation type.

Keywords

Long-chain fatty acid combination Microbial Rumen microorganism.

References

  1. Agarwal, N.;Shekhar, C.; Kumar, R.; Chaudhary, L. C. and Kamra, D. N. (2009). Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology, 148: 321-327.
  2. Asanuma, N.; Ishiwata, M.; Yoshii, T.; Kikuchi, M.; Nishina, Y; and Hino, T. (2005). Characterization and transcription of the genes involved in butyrate production in Butyrivibrio fibrisolvens type I and II strains. Current Microbiology,51: 91-94.
  3. Busquet, M.; Calsamiglia, S.; Ferret, A. and Kamel C. (2005). Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89: 761-771.
  4. Chen, J. and Weimer, P. J. (2001). Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology,147: 21–30.
  5. Chilliard, Y.; Bauchart, D.; Gagliostro, G.; Ollier, A. and Vermorel, M. (1991). Duodenal rapeseed oil infusion in the early and mid-    lactation cows. 1. Intestinal apparent digestibility of fatty acids and lipids. Journal of Dairy Science,74: 490-498.
  6. Cieslak, A.; Váradyová, Z.; Kišidayová, S. and Szumacher, S. M. (2009). The effects of linoleic acid on the fermentation parameters, population density, and fatty-acid profile of two rumen ciliate cultures, Entodinium caudatum and Diploplastron affine. Acta Protozoologica, 48: 51–61.
  7. Doreau, M. and Ottou, J. F. (1996). Influence of niacin supplementation on in vivo digestibility and ruminal digestion in dairy cow. Journal of Dairy Science, 79, 2247-2254.
  8. Gao, J.; Wang, M. Z.; Jing, Y. J.; Sun, X. Z.; Wu, T. Y. and Shi L. F. (2016). Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats in vitro. Journal of Integrative Agriculture,15: 2827-2833.
  9. Goodnight, S. H.; Harris, W. S.; Connor, W. E. and Illingworth, D. R. (1982). Polyunsaturated fatty acids, hyperlipidemia, and thrombosis. Arteriosclerosis Thrombosis and Vascular Biology,2: 87-113.
  10. Hess, B. W.; Moss, G. E. and Rule, D. C. (2008). A decade of developments in the area of fat supplementation research with beef cattle and sheep. Journal of Animal Science,86: 188-204.
  11. Hobson, P. N. and Stewart C. S. (2012). The rumen bacteria. In: The rumen microbial ecosystem. Springer Science Business Media. p19-20.
  12. Hungate, R. E. (2013). The rumen bacteria. In: The Rumen and its Microbes. Elsevier. P8-9.
  13. Jalè, D. and Èerešòakova, Z. (2002). Effect of plant oil and malate on rumen fermentation in vitro. Czech Journal of Animal Science, 47: 106-111.
  14. Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C. and Yu Z. (2011). Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livestock Science,135: 84-92.
  15. Leitch, E.; Walker, A. W.; Duncan, S. H.; Holtrop, G. and Flint, H. J. (2007). Selective colonization of insoluble substrates by human faecal bacteria. Environmental Microbiology,9: 667-679.
  16. Menke, K. H. and Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development,28: 7-55.
  17. Odenyo, A. A.; Mackie, R. I.; Stahl, D. A. and White, B. A. (1994). The use of 16SrRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Applied and Environmental Microbiology, 60: 3688-3696.
  18. Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology,9: 249-262.
  19. Ortega,M. E.; Stern, M. D. and Satter, L. D. (1979). The effect of rumen ammonia concentrate on dry matter disappearance in situ. Journal of Dairy Science, 62 (Suppl): 76. 
  20. Patra, A. K. and Yu, Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78: 4271-4280.
  21. Ramesh, B. P.; Amer, A. A. and Darcie H. (2011). The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition.J. Microbiolology,49: 216-223.
  22. Hespell, R.B.; Wolf, R. and Bothast R. J. (1978). Fermentation of xylands by Butyrivibrio fibrisolvens and other ruminal bacteria. Applied and Environmental Microbiology,53: 2849-2853.
  23. Sirohi,S. K.; Dagar, S. S.; Singh, N.; Chaudhary, P. P.; Puniya, A. K. and Singh, D. (2013). Differential rumen microbial dynamics and fermentation parameters in cattle fed on high fibre and high concentrate diets. Indian Journal of Animal Nutrition, 30: 60-66.
  24. Theodorou, M. K. and France J. (2005). Rumen microorganisms and their interactions. Quantitative Aspects of Ruminant Digestion and Metabolism, 2: 207-228.
  25. Wang, M. Z.; Zhan, A. J. and Gao, Y. (2010). Effects of different protein feeds on growth parameters of Ruminobacter amylophilus in the rumen by Real-time PCR. Chinese Journal of Animal Nutrition, 22: 327-334 (In Chinese ).
  26. Wang, M. Z.; Shi, L. J.; Ding, L. Y.; Zhang, B. S.; Liu, X. and Wang, H. R. (2011). Effects of different oils on rumen protozoa population and cellulolytic bacteria in vitro. Chinese Journal of Animal Science,7: 32-36 (In Chinese).
  27. Wang, S.; Wang, M. Z. and Lu, Z. J. (2011). Effects of different plant oils on the enzyme activity and microbial activity in vitro. Chinese Journal of Animal Nutrition, 23: 1309-1316(In Chinese ).
  28. Williams, A. G. and Coleman, C. S. (1997). P73-139. In: Hob-Son, P.N. and STEWART, C.S. (eds.) The Rumen Microbial Ecosystem, Chapman & Hall, London.
  29. Zigová, J. and Šturdík, E. (2000). Advances in biotechnological production of butyric acid. Journal of Industrial Microbiology and Biotechnology, 24: 153-160.
  30. Zoetendal,E. G.; Akkermans, A. D. L. and De Vos, W. M. (1998). Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology,64: 3854-3859. 

Global Footprints