Some novel rules of the biological heterozygous effects
 

DOI: 10.18805/ijar.B-762    | Article Id: B-762 | Page : 811-815
Citation :- Some novel rules of the biological heterozygous effects.Indian Journal Of Animal Research.2018.(52):811-815
Mei LI and Linyun Wang 1055905815@qq.com
Address : Department of Animal Genetics, Breeding and Reproduction, Nanjing Agricultural University, Nanjing-210095, China.
Submitted Date : 27-04-2017
Accepted Date : 21-07-2017

Abstract

The pure of an individual is relative to the hybrid. No two identical organisms are found on the earth at the level of nucleotide sequence. After two parents mating, the variations of their offspring will occur in the nucleotide sequence compared to their parents, which are called biological heterozygous effect. However, the molecular bases for this phenomenon remain elusive. In our view, biological heterozygous effects at least follow the below rules: Firstly, the contribution of the outcome of traits passed from parents to offspring is not equal. Secondly, progeny variation across the heterozygous individuals is lineage-specific dependent and some difference is found among the individuals within a family. Thirdly, biological variation is absolute, random, non-directional, and is fixed and forms a new species while other variation is getting into the blind branch of the species under some circumstances. In summary, Heterozygous effect is the key reason for the formation of biodiversity on the earth.

Keywords

Biology Heterozygous effect Variations

References

  1. Adam Barelay (IRRI). (2007). A hybrid History. Rice today, 22.
  2. Bartel,D. P. (2004). Micrornas: Genomics,biogenesis, mechanism and function. Cell,116:281-297.
  3. Cassady JP, Young LD, Leymaster KA. (2002). Heterosis and recombination effects on pig growth and carcass traits. J Anim Sci., 80(9):2286-302.
  4. Chen weixin, Li Ruimin, Chen Xiaohua et al. (1963). The new huai pig breeding. Chinese Journal of Animal and Veterinary Sciences,6 (1): 29-40.
  5. Chen ZJ.(2013). Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet,14(7):471-82.
  6. Clasen JB, Norberg E, Madsen P, Pedersen J, Kargo M. (2017). Estimation of genetic parameters and heterosis for longevity in        crossbred Danish dairy cattle. J Dairy Sci., pii: S0022-0302(17)30529-5.
  7. Divya Chouhan, Shiv Ratan Maloo, Dilip Singh (2017). Studies on morphological and molecular diversity in speciality corn (Zea    mays L.). (2017). Indian Journal of Agricultural Research, 51(2):142-148.
  8. G. Samlind sujin, P. Karuppaiah,K. Saravanan. (2017). Genetic variability and correlation studies in brinjal (Solanum melongena L.).Indian Journal of Agricultural Research, 51(2):112-119. 
  9. Guo Baojian, Sui Zhipeng, Li Yangyang, Feng Wanjun, Yanwenwen, Li Huimin, Sunqixin, Nizhongfu, (2003). Analysis of differentially  expressed proteins in leaves of Maize Hybrids and parents at Seedling Stage. Agricultural Sciences in China, 46(14): 3046- 3054. 
  10. Herbst RH, Bar-Zvi D, Reikhav S, Soifer I, Breker M, Jona G, Shimoni E, Schuldiner M, Levy AA, Barkai N. (2017). Heterosis as a consequence of regulatory incompatibility. BMC Biol.15 (1):38.
  11. Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, et al (2015). Genomic analysis    of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun.,6:6258. doi: 10.1038/        ncomms7258. 
  12. Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, et al. (2013). Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell, 153(4):773-84.
  13. Li Ning. (2003). Animal Genetics. China Agricultural Press, p. 142.
  14. Li Tao. (2004). Taxonomy and evolution of giant panda. Geological science and technology information,23(3):40-45.
  15. Li Yanjun. (2011). From “rice hybridization” to “hybrid rice, agricultural archaeology, 4:36-40
  16. Lin,L.P, Lau N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge C.B. and Bartel. D.P. (2003). The micrornas of caenorhabditis elegans. Genes Dev.,17: 991-1008
  17. Liu Jun, Zhouyiyun, Liuzheng. (2012). “Go” into the ocean of whale. Life World, 276(10):32-35. 
  18. Liu Zhenyi. (1995). Animal breeding. China Agricultural Press, P.131
  19. Ni Liju. (2004). Study on Some Genetic Characteristics of Four Groups of Microtus Fortis. Nanjing Agricultural university. Master         thesis.
  20. Niharika Shukla. (2017). Genetic variation and association study for grain yield in germplasm accessions of maize (zea mays L.). Indian Journal Of Agricultural Research, 51(2): 120-127.
  21. Pradhan Biswajit, Kundu Sritama and Kundagrami Sabyaschi. (2017). Genetic variability and character association for yield and yield components in submergence tolerant rice varieties. Indian Journal Of Agricultural Research, 51(3):239-244.
  22. Qi H, Huang J, Zheng Q, Huang Y, Shao R, Zhu L, Zhang Z, Qiu F, Zhou G, Zheng Y, Yue B.(2013). Identification of combining ability    loci for five yield-related traits in maize using a set of testcrosses with intogression lines. Theor. Appl. Genet. 126: 369–377.
  23. Qu Z, Li L, Luo J, Wang P, Yu S, Mou T, Zheng X, Hu Z. ÿ2012    ÿ. QTL mapping of combining ability and heterosis of agronomic   traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One. (1):e28463. 
  24. Selvaraj S, R Dixon J, Bansal V, Ren B. (2013). Whole-genome haplotype reconstruction using proximity-ligation and shotgun        sequencing. Nat Biotechnol 31 (12) :1111-1118. 
  25. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. (1992). Identification of genetic factors contributing to heterosis in a         hybrid from two elite maize inbred lines using molecular markers. Genetics,132(3):823-839.
  26. Wang Linyun. (2011). The theory of relativity of purebred and hybrid in biological individual. China poultry,33(1):35-40.
  27. Wu Qingyu. (2002). Basic life science, 1: 14.
  28. Wu Qingyu. (2002b). Basic life science, p.21.
  29. Xie xiaodong, NizhongfuÿMengfanrong, Wulimin, wangzhangkui, sunqixin. (2003). A preliminary study on the difference of gene xpression between seed of early hybrid wheat and its parents and its relationship with heterosis. Journal of Genetics and         Genomics, 30(3):260-266.
  30. Yan J, Wu Y, Li W, Qin X, Wang Y, Yue B. (2017). Genetic mapping with testcrossing associations and F2:3 populations reveals the         importance of heterosis in chilling tolerance at maize seedling stage. Sci Rep., 7(1):3232.
  31. Yan Xun. (2005). Status, Challenge and Prospect of Wild Giant Pandas. Acta Theriologica Sinica,25(4):402-406. 
  32. Yang Mingsheng, Liu Honglin, Chen jie. (2002). Imprinting mechanism of imprinting genes and its expression and regulation. Chemistry  of life, 22 (1):1-3.
  33. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. (1997). Importance of epistasis as the genetic basis of     heterosis in an elite rice hybrid. Proc Natl Acad Sci.,94(17):9226-9231.
  34. Zhao Shouyuan et al. (2001). Modern genetics. Advanced Education Press, p.309.
  35. Zhou Bo, Liu Honglin, Huang Ruihua, Wang Linyun. (2010). Difference in carcess and meat quality in F1 hybrids of the reciprocal  crosses between large white pig and Erhualian pig. The conference of pig association affiliated Chinese Institute of animal husbandry and veterinary and creation symposium on pig breeding, Guilin,18-21.
  36. Zou D, Sun S, Li R, Liu J, Zhang J, Zhang Z. (2015). MethBank: a database integrating next-generation sequencing single-base-resolution DNA methylation programming data. Nucleic Acids Res.43(Database issue):D54-8.

Global Footprints