Multilocus sequence typing analysis of Klebsiella pneumoniae isolated from swine

DOI: 10.18805/ijar.v0iOF.8475    | Article Id: B-620 | Page : 136-139
Citation :- Multilocus sequence typing analysis of Klebsiella pneumoniae isolated from swine .Indian Journal Of Animal Research.2018.(52):136-139

Yang Fan,  Li SM and Li Min

yangf77@163.com
Address :

School of Basic Medical Sciences, Xinxiang Medical University, 453003, Xinxiang China.

Submitted Date : 14-09-2016
Accepted Date : 21-04-2017

Abstract

A total of  86 strains Klebsiella pneumoniae isolated from swine were collected to analysis the molecular genetic characteristic by multilocus sequence typing (MLST). The eURST software was used to evaluate the results of MLST. The results indicated that all isolates clustered into 14 ST types(STs). ST106 (including 3 strians) and ST23 (including 2 strians) were single branch. Other 12 ST types belong to the CC258 clonal complex. This study showed that klebsiella pneumoniae isolated from swine in this region has some genetic diversity and the main types were ST258 clone complex, it may be transfered between swine and human. 

Keywords

Klebsiella pneumoniae Multilocus sequence typing Swine.

References

  1. Ben-David D, Kordevani R, Keller N, et al. (2012). Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 18(1):54-60.
  2. Brinkworth AJ, Hammer CH, and Olano LR. (2015). Identification of outer membrane and exoproteins of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumonia. PLoS One. 10(4):e0123219.
  3. Brisse S, and Duijkeren Ev. (2005). Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Vet Microbiol, 105(3-4):307-312.
  4. Cuzon G, Naas T, Truong H.et al. (2010). Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerg infect dis. 16 (9):1349–1356.
  5. De Rosa FG, Corcione S, and Cavallo R. (2015). Critical issues for Klebsiella pneumoniae KPC-carbapenemase producing K. pneumoniae infections: a critical agenda. Future Microbiol, 10(2):283-94. 
  6. Diancourt L, Passet V, and Verhoef J. (2005). Multilocus sequence typing of klebsiella pneumoniae nosocomial isolates. J Clin Microbiol, 43(8):4178-4182. 
  7. Giamarellou H, Galani L, Baziaka F, and Karaiskos I. (2013). Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob agents chemother. 57:2388–2390.
  8. Gregg S. Davis and Lance B. (2016). Price. Recent research examining links among klebsiella pneumoniae from food, food animals, and human extraintestinal infections. Curr Envir Health Rpt. 3:128–135.
  9. Holt KE, Wertheim H, Zadoks RN, et al.. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci. 112(27):E3574–E3581.
  10. Jain R, Walk ST, and Aronoff, DM. (2013). Emergence of Carbapenemase producing Klebsiella Pneumoniae of Sequence type 258 in Michigan, USA. Infect Dis Rep. 5(1):e5. 
  11. Keynan, Y. and Rubinstein, E. (2007). The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents. 30:385–389.
  12. Kim JK, Chung DR, Wie SH, et al. (2009). Risk factor analysis of invasive liver abscess caused by the K1 serotype Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis.28(1):109-11. 
  13. Locatelli C, Scaccabarozzi L, Pisoni G, et al. (2010). CTX-M1 ESBL-producing Klebsiella pneumoniae subsp. pneumoniae isolated from cases of bovine mastitis. J Clin Microbiol. 48(10):3822–3823.
  14. Magiorakos AP, Srinivasan A, Carey RB, et al. (2012). Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18(3):268–281.
  15. Munoz-Price LS, Poirel L, Bonomo RA, et al. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect dis. 13(9):785–796. 
  16. Qi Y, Wei Z, Ji S, et al. (2011). ST11, the dominant clone of KPC-producing Klebsiella pneumonia in China. J Antimicrob Chemother. 66(2):307-312. 
  17. Roh KH, Lee CK, Sohn JW, et al. (2011). Isolation of a Klebsiella pneumonia isolate of sequence type 258 producing KPC-2 carbapenemase in Korea. Korean J Lab Med. 31(4):298-301. 
  18. Samuelsen O, Toleman MA, Hasseltvedt V, et al. (2011). Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clin Microbiol Infect. 17(12): 1811–1816. 
  19. Seidler RJ, Knittel MD, and Brown C. (1975). Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol. 29(6):819–25.
  20. Shon A S, Bajwa R P, and Russo T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 4(2):107–118.
  21. Ullmann U, and Podschun R. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 11(4):589–603.
  22. Yang F, Li SM, Deng BG, et al. (2015). Prevalence and relevance analysis of multidrug-resistant Staphyloccoccus aureus of meat, poultry and human origin. Indian J Anim Res. 49(1):86-90.
  23. Yang J, Ye L, Guo L, et al. (2013). A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin Microbiol Infect. 19(11):E509-515. 

Global Footprints