Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 52 issue 7 (july 2018) : 939-946

Impact of maternal components on fitting of animal models in genetic parameters estimation for body weight traits in Rahmani lambs
 

H.A. Radwan, N.A. Shalaby, A.A. Gabr
1Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura (Egypt)
Cite article:- Radwan H.A., Shalaby N.A., Gabr A.A. (2018). Impact of maternal components on fitting of animal models in genetic parameters estimation for body weight traits in Rahmani lambs. Indian Journal of Animal Research. 52(7): 939-946. doi: 10.18805/ijar.B-568.
The present research was undertaken to determine the effect of application animal six models including or ignoring maternal genetic and/or maternal permanent environmental effects based on single and multi-trait animal model analyses and choose the most efficient method of selection to improve body weight traits in Rahmani lambs on genetic base. Current findings pointed to increase phenotypic variances of weight traits by increasing lamb’s age. Maternal environmental effects shared approximately 13% (ranged from 11% to 20%) of the whole phenotypic variation for body weight traits in multi-trait analysis and thereafter declined significantly for all the traits especially in single- trait analysis. The results show the significance of including at least one maternal component with covariance between direct and maternal effect for genetic evaluation body weight traits and high direct heritability estimates denoted possibility to use weight traits as selection criteria due to their direct response to genetic improvement through direct selection method and their economic importance in mutton production.
  1. Al-Shorepy, S. (2001). Estimates of genetic parameters for direct and maternal effects on BW of local sheep in United Arab Emirates. Small Rumin. Res. 39: 219-224. 
  2. Assan, N. (2013). Impact of maternal effects on ranking of animal models in genetic parameter estimation for 18-month weight in Tuli cattle of Zimbabwe, J. Anim. Prod. Adv. 3: 126-133. 
  3. Behzadi, M.R, Shahroudi, F.E. and Van Vleck, L.D. (2007). Estimates of genetic parameter for growth traits in Kermani sheep. J. Anim. Breed. Genet. 124: 296-301. 
  4. Dangi P.S. and Poonia J.S. (2006). Factors affecting weaning and six month body weight in crossbred sheep. Indian J. Anim. Res. 40: 161-163.
  5. El Fadili, M., Michaux, C., Detilleux, J. and Leroy, P.L. (2000). Genetic parameters for growth traits of the Moroccan Timahdit breed of sheep. Small Rumin. Res. 37: 203-208.
  6. El-Awady, H.G., Oudah, E.Z.M., Shalaby, N.A., El Arian, M.N. and Metawi, H.R. (2011). Genetic improvement study on pre-weaning body weight of Egyptian Rahmani lambs under a pure breeding production system. Options Méditerranéennes, 100: 311-316. 
  7. El-Awady, H.G. (2011). Different animal models for estimating genetic parameters of Barki sheep in Egypt. J. Ameri. Sci.7: 882-887. 
  8. Ganesan, R., Dhanavanthan, P., Balasubramanyam, D., Kumarasamy, P. and Kiruthika, (2015). Growth modeling and factors affecting growth traits in Madras red Sheep. Indian J. Anim. Res. 49: 20-25. 
  9. Gowane, G.R., Chopra, A., Prakash, V. and Arora, A.L. (2010). Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Malpura sheep. Livest. Sci. 131: 94-101. 
  10. Gowane, G.R., Prince, L.L.L., Lopes, F.B., Paswan, C. and Sharma, R.C. (2015). Genetic and phenotypic parameter estimates of live weight and daily gain traits in Malpura sheep using Bayesian approach. Small Rumin. Res., 128: 10 –18. 
  11. Groeneveld, E., Kovac, M. and Garcia-cortex, A. (2003). REML VCE a multi model restricted maximum likehood (co) variance component estimation package version 5. 
  12. Jeichitra, V., Rajendran, R., Karunanithi, K. and Rahumathulla, P.S. (2015). Comparison of three methods for estimating breeding values of Mecheri rams for body weights. . Indian J. Anim. Res. 49: 161-164. 
  13. Mallick, P.K., Pourouchottamane, R., Rajapandi, S, Thirumaran, S.M.K., Venkataraman, R, Nagarajan, G., Murali, G. and Rajendiran, A.S. (2017). Influence of genetic and non genetic factors on growth traits of Bharat Merino sheep in sub-temperate climate of Kodai hills of Tamil Nadu, India. Indian J. Anim. Res. 51: 365-370. 
  14. Manoj, M., Gandhi, R.S., Raja, T.V., Verma Archana, Singh Avtar, Sachdeva, G.K. and Kumar, Amit (2014). Genetic parameters of body weights at different ages in Sahiwal heifers. Indian J. Anim. Res. 48: 217-220. 
  15. María, G. A., Boldman, K.G., Van Vleck, L.D. (1993). Estimates of variances due to direct and maternal effects for growth traits of Romanov. J. Anim. Sci. 71: 845-849. 
  16. Meyer, K. (1992). Bias and sampling (co)variances of estimates of variance components due to maternal effects. Genet. Sel. Evol. 24: 487- 509. 
  17. Mohammadi, H., Shahrebabak, M.M., Shahrebabak, H.M., Bahrami, A. and Dorostkar, M. (2013). Model comparisons and genetic parameter estimates of growth and the Kleiber ratio in Shal sheep. Arch. Tierz. 56: 264-275. 
  18. Shokrollahi, B. and Baneh, H. (2012). (Co) variance components and genetic parameters for growth traits in Arabi sheep using different animal models. Genet. Mol. Res. 11: 305-314. 
  19. Zamani, P., Moradi, M.R., Alipour, D. and Ahmadi, A. (2015). Estimation of variance components for body weight of Moghani sheep using B-Spline random regression models. I.J.A.S. 5: 647-654 

Editorial Board

View all (0)