The relationships of collagen and ADAMTS2 expression levels with meat quality traits in cattle

DOI: 10.18805/ijar.v0iOF.4557    | Article Id: B-498 | Page : 167-172
Citation :- The relationships of collagen and ADAMTS2 expressionlevels with meat quality traits in cattle .Indian Journal Of Animal Research.2018.(52):167-172

H.Liao, X.H. Zhang, Y.X. Qi, Y.Q. Wang, Y.Z. Pang, Z.B. Zhang and P. Liu

zhangxiaohui78@126.com
Address :

College of Animal Science, Henan University of Science and Technology, 471003, Luoyang, P.R.China.

Submitted Date : 20-04-2016
Accepted Date : 14-07-2016

Abstract

Extracellular matrix (ECM) is the major macromolecule in skeletal muscle, and collagen is main component of ECM surrounding muscle fiber and adipocyte, which affect meat quality greatly. The remodeling of ECM is regulated by matrix metalloproteinases, such as ADAMTS2, which is essential for the maturation of triple helical collagen fibrils in body. The expression patterns of COL1A1, COL2A1, COL3A1 and ADAMTS2 in longissimus dorsi muscle were explored by qRT-PCR and results indicated that the expression levels of COL1A1, COL3A1 and ADAMTS2 were significantly higher at 3 and 24 month, while significantly lower at 12 and 30 month. The expression of ADAMTS2 and COL1A1 had significant positive relationships with intramuscular fat content, while expression of COL3A1 had significant positive relationship with shearing force and water holding capacity in cattle. The expression levels of collagen and ADAMTS2 were significantly higher in mesenteric fat, mammary fat pad and subcutaneous fat than in longissimus dorsi muscle, biceps femoris and infraspinitus tissues. The expressions levels of COL1A1, COL3A1 and ADAMTS2 were significantly lower in marbling fat than in other fat tissues. This study indicated that the expression of collagen and ADAMTS2 had important effects on postnatal skeletal muscle development and meat quality.

Keywords

ADAMTS2 Collagen Meat quality Nanyang cattle Muscle development.

References

  1. Allison, R.G. and Richard, L.L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle. Nerve., 44:318-331. 
  2. Carmeli, E., Moas, M., Reznick, A.Z. and Coleman, R. (2004). Matrix metalloproteinases and skeletal muscle: a brief review. Muscle. Nerve., 29:191-197. 
  3. Chad, N.B., Vasilis, V. and Daniel, W.N. (2009). Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum. Genomics., 4:43-55. 
  4. Chriki, S., Gardner, G.E., Jurie, C., Picard, B., Micol, D., Brun, J.P., Journaux, L. and Hocquette, J.F. (2012). Cluster analysis application identifies muscle characteristics of importance for beef tenderness. BMC. Biochem., 13:29-    39. 
  5. Damon, M., Wyszynska-Koko, J., Vincent, A., He´rault, F. and Lebret, B. (2012). Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure. PLoS. ONE, 7:e33763. doi:10.1371/journal.pone.0033763. 
  6. Du, M. and Carlin, K.M. (2012). Meat science and muscle biology symposium: extracellular matrix in skeletal muscle development and meat quality. J. Anim. Sci., 90: 922-923. 
  7. Fosang, A.J. and Little, C.B. (2008). Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat. Clin. Pract. Rheu., 4:420-427. 
  8. Fry, C.S., Lee, J.D., Jackson, J.R., Kirby, T.J., Stasko, S.A., Liu H., Dupont-Versteegden, E.E., McCarthy, J.J. and Peterson, C.A. (2014). Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. Faseb. J., 28: 1654-1665. 
  9. Hjorth, M., Norheim, F., Meen, A.J., Pourteymour, S., Lee, S., Holen, T., Jensen, J., Birkeland, K., Martinov, V.N., Langleite, T.M., Eckardt, K., Drevon, C.A. and Kolset, S.O. (2015). The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiological. Reports., 3: e12473-12491.
  10. Kelwick, R., Desanlis, I., Wheeler, G.N. and Edwards, D.R. (2015). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome. Biol., 16: 113-128. 
  11. Kim, Y.H.B., Luc, G. and Rosenvold, K. (2013). Pre rigor processing, ageing and freezing on tenderness and colour stability of lamb loins. Meat. Sci., 95: 412-418. 
  12. Lambertz, C., Panprasert, P., Holtz, W., Moors, E., Jaturasitha, S., Wicke, M. and Gauly, M. (2014). Carcass characteristics and meat quality of swamp buffaloes (Bubalus bubalis) fattened at different feeding intensities. Asian. Austral. J. Anim., 27: 551-560. 
  13. Lee, S.H., Gondro, C., van der Werf, J., Kim, N.K., Lim, D.J., Park, E.W., Oh, S.J., Gibson, J.P. and Thompson, J.M. (2010). Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC. Genomics., 11: 623-633. 
  14. Listrat, A., Lethias, C., Hocquette, J.F., Renand, G., Menissier, F., Geay, Y. and Picard, B. (2000). Age-related changes and location of types I, III, XII and XIV collagen during development of skeletal muscles from genetically different animals. Histochem. J., 32: 349-356. 
  15. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDC(T). Methods., 25: 402-408. 
  16. Mariman, E.C. and Wang, P. (2010). Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life. Sci., 67: 1277-1292. 
  17. McLaughlin T., Lamendola, C. and Liu, A. (2011). Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96:1756-1760.
  18. Moeller, S.J., Miller, R.K., Aldredge, T.L., Logan, K.E., Edwards, K.K., Zerby, H.N., Boggess, M., Box-Steffensmeier, J.M. and Stahl, C.A. (2010). Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Meat. Sci., 85: 96-103. 
  19. Nusgens, B.V., Verellen-Dumoulin, C., Hermanns-Le, T., De Paepe, A., Nuytinck, L., Pierard, G.E. and Lapière, C.M. (1992). Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis. Nat. Genet., 1: 214-217. 
  20. Rosenvold, K. and Andersen, H.J. (2003). Factors of significance for pork quality - a review. Meat. Sci., 64: 219-237. 
  21. Tae-Hwa C. (2012). Peri-adipocyte ECM remodeling in obesity and adipose tissue fibrosis. Adipocyte., 1: 89-95. 
  22. Torrescano, G., Sánchez, E.A., Giménez, B., Roncalés, P. and Beltrán, J.A. (2003). Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat. Sci., 64: 85-91. 
  23. Visse, R. and Nagase, H. (2003). Matrix mentalloproteinases and tissue inhibitors of mentalloproteinases: structure, function and biochemistry. Circ. Res., 92: 827-839. 
  24. Wang J., Hua, L.S., Pan, H., Zhang, L.Z., Li, M.X., Huang, Y.Z., Li, Z.J., Lan, X.Y., Lei, C.Z., Li, C.J. and Chen, H. (2015). Haplotypes in the promoter region of the CIDEC gene associated with growth traits in Nanyang cattle. Sci. Rep., 5: 12075-12082.
  25. Wang, W.M., Lee, S.., Steiglitz, B.M., Scott, I.C., Lebares, C.C., Allen, M.L., Brenner, M.C., Takahara, K. and Greenspan, D.S. (2003). Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-    proteinase. J. Biol. Chem., 278: 19549-19557. 
  26. Wang, Y.X., Dumont, N.A. and Rudnicki, M.A. (2014). Muscle stem cells at a glance. J. Cell. Sci., 127: 4543-4548. 
  27. Wheeler, T.L., Shacklford, S.D. and Koohmaraie, M. (2002). Technical note: Sampling methodology for relating sarcomere length, collagen concentration, and the extent of postmortem proteolysis to beef and pork longissimus tenderness. J. Anim. Sci., 80: 982-987. 
  28. Wueest S, Schoenle, E.J. and Konrad, D. (2012). Depot-specific differences in adipocyte insulin sensitivity in mice are diet- and function-dependent. Adipocyte., 1:153-156.
  29. Yamada, M., Sankoda, Y., Tatsumi, R. and Mizunoya, W. (2008). Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int. J. Biochem. Cell. B., 40: 2183-2191. 
  30. Yamada, M., Tatsumi, R., Kikuiri, T., Okamoto, S., Nonoshita, S., Mizunoya, W., Ikeuchi, Y., Shimokawa, H.., Sunagawa, K. and Allen, R.E. (2006). Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle. Nerve., 34: 313-319. 
  31. Zhang, X.H., Qi, Y.X., Gao, X., Li, J.Y. and Xu, S.Z. (2013). Expression of ADAMTS4 and ADAMTS5 in longissimus dorsi muscle related to meat tenderness in Nanyang cattle. Genet. Mol. Res., 12: 4639-4647. 

Global Footprints