A laboratory environment previously associated with a palatable diet can result in overfeeding in rats

DOI: 10.18805/ijar.v0iOF.4555    | Article Id: B-477 | Page : 1267-1270
Citation :- A laboratory environment previously associated with a palatablediet can result in overfeeding in rats .Indian Journal Of Animal Research.2018.(52):1267-1270

Alma Gabriela Martínez*, Antonio López-Espinoza, Patricia Josefina López-Uriarte, Claudia Patricia Beltrán-Miranda, Hugo Daniel Miguel-Gómez and Ana Cristina Espinoza-Gallardo

alma.martinez@cusur.udg.mx
Address :

Behavioral Feeding and Nutrition Research Center, University Center of the South-University of Guadalajara, Av. Enrique Arreola Silva No. 883, Centro. C.P. 49000, Ciudad Guzmán, Jalisco, México.

Submitted Date : 12-03-2016
Accepted Date : 13-07-2016

Abstract

Enriched and non-enriched laboratory environments produce various biological and behavioral effects on laboratory animals. One of the most impacted aspects in this regard is eating behavior. We examined associations between enriched vs. non-enriched environments and palatable vs. non-palatable diets on food intake in rats. Experiment 1 demonstrated that there are no significant differences in palatable food consumption irrespective of whether rats were exposed to enriched or non-enriched environments (P>0.05). In contrast, experiment 2 demonstrated that a combination of exposure to either of these environments and palatable food is enough to produce overfeeding in rats (P<0.05). These outcomes in rats may offer significant inferences in regards to the regulation of eating behavior in humans.

Keywords

Environment Food intake Palatable food Weigh Rats.

References

  1. Abou-Ismail, U. A. and Mahboub, H. D. (2011). The effects of enriching laboratory cages using various physical structures on multiple measures of welfare in singly-housed rats. Laboratory Animals, 45: 145–153. doi: 10.1258/la.2011.010149 
  2. Appelhans, B. M., French, S. A., Pagoto, S. L. and Sherwood, N. E. (2016). Managing temptation in obesity treatment: A neurobehavioral model of intervention strategies. Appetite, 96: 268-279. doi: 10.1016/j.appet.2015.09.035
  3. Balcombe J. (2006). Laboratory environments and rodents behavioural needs, a review. Laboratory Animals, 40: 217-235.
  4. Birch, A. M., McGarry, N. B. and Kelly, A. M. (2013). Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus, 23:437-450. doi: 10.1002/hipo.22103
  5. Boggiano, M. M., Dorsey, J. R., Thomas, J. M. and Murdaugh, D. L. (2009). The Pavlovian power of palatable food: lessons for weight-loss adherence from a new rodent model of cue-induced overeating. Int. J. Obes., 33: 693-701. doi: 10.1038/ijo.2009.57
  6. Castro, H., Pomar, C. A., Picó, C., Sánchez, J. and Palou, A. (2015). Cafeteria overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight. Int. J. Obes., 39: 430-437. doi:10.1038/ijo.2014.125; published online 12 August 2014
  7. Costa, T., Dias, F. and Teixeira-Silva, F. (2015). Environmental enrichment for adult rats: Effects on trait and state anxiety. Neurosci Lett., 584:93–96. doi:10.1016/j.neulet.2014.10.004
  8. Hebebrand, J., Albayrak, O., Adan, R., Antel, J., Dieguez, C., de Jong, J., Leng, G., Menzies, J., Mercer, J. G. and Murphy, M. (2014). “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev., 47: 295-306. doi:10.1016/j.neubiorev.2014.08.016
  9. Makowska, I. J. and Weary, D. M. (2016). Differences in anticipatory behaviour between rats (Rattus norvegicus) housed in standard versus semi-naturalistic laboratory environments. PLoS ONE, 11: e0147595. doi:10.1371/journal.pone.0147595 
  10. Maegele, M., M. Braun., Wafaisade, A., Schäfer, N., Lippert-Gruener, M., Kreipke, C., Rafols, J., Schäfer, U., Angelov, D. N. and E. K. (2015). Long-term effects of enriched environment on neurofunctional outcome and CNS lesion volume after traumatic brain injury in rats. Physiol Res., 64: 129-145, 2015
  11. Martire, S. I., Maniam, J., South, T., Holmes, N., Westbrook, R. F. and Morris, M. J. (2014). Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res., 265: 132-141. doi: 10.1016/j.bbr.2014.02.027
  12. Martire, S. I., Westbroke, R. F. and Morris, M. J. (2015). Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose. Physiol. Behav., 139: 80–88. doi: 10.1016/j.physbeh.2014.11.006
  13. Mering, S. and Jolkkonen, J. (2015). Proper housing conditions in experimental stroke studies special emphasis on environmental enrichment. Front. Neurosci., 9:106. doi: 10.3389/fnins.2015.00106 
  14. Mora, F. (2013). Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci., 15:45-52. 
  15. Nasser, J. (2001). Taste, food intake and obesity. Obes Rev., 2: 213-218. doi: 10.1046/j.1467-789X.2001.00039.x
  16. Olsson, I. A. S. and Dahlborn, K. (2002). Improving housing conditions for laboratory mice: a review of ‘environmental enrichment’. Lab. Anim., 36:243-270. 
  17. Petrovich, G. D., Ross, C. A., Gallagher, M. and Holland, P. (2007). Learned contextual cue potentiates eating in rats. Physiol. Behav., 90: 362-367. doi: 10.1016/j.physbeh.2006.09.031
  18. Sansa, J., Krug, I., Chamizo, V. and Fernández-Aranda, F. (2009). Is contextual-potentiated eating dependent on caloric density of food? Psicologica, 30: 203-216. 
  19. Shafat, A., Murray, B. and Rumsey, D. (2009). Energy density in cafeteria diet induced hyperphagia in the rat. Appetite, 52: 34-38. doi: 10.1016/j.appet.2008.07.004. Epub 2008 Jul 17.
  20. Wansik, B. (2004). Environmental factors that increase the food intake and consumption volume of unknowing consumers. Ann. Rev. Nutr., 24: 455-479. doi: 10.1146/annurev.nutr.24.012003.132140
  21. Weingarten, H. P. (1984). Meal initiation controlled by learned cues: basic behavioral properties. Appetite, 5: 147–158. doi:10.1016/S0195-6663(84)80035-5
  22. Zeeni, N., Bassil, M., Fromentin, G., Chaumontet, C., Darcel, N., Tome, D. and Daher, C. F. (2015). Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats. Physiol. Behav., 139: 41–49. doi: 10.1016/j.physbeh.2014.11.003 

Global Footprints