Differential gene expressions of NLRC5 signaling pathway in chicken macrophages cells response to Salmonella Enteritidis derived lipopplysaccharides stimulation

DOI: 10.18805/ijar.11462    | Article Id: B-439 | Page : 841-846
Citation :- Differential gene expressions of NLRC5 signaling pathway in chicken macrophages cells response to Salmonella Enteritidisderived lipopplysaccharides stimulation .Indian Journal Of Animal Research.2017.(51):841-846

Lingling Qiu, Guobin Chang, Xiangping Liu, Zhiteng Li, Wei Lu, Lichen Ren, Lu Xu, Fang Wan, Xiaomin Guo and Guohong Chen

llqiu_yzu@qq.com
Address :

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225003, P. R. China.

Submitted Date : 13-01-2016
Accepted Date : 1-06-2016

Abstract

As we all known, NLRC5 recognizes intracellular pathogen-associated molecular patterns (PAMPs) and provokes innate immune system. Its role in innate immune response, NF-kB activation and MHC-I expression remains controversial. In the present study, it was detected that differential gene expressions in NLRC5 signaling pathway at 2, 4, 6 and 8 hours after exposure to LPS using qRT-PCR technology, then analyzed its roles in host defense. The results showed that, comparing to control groups, the expression of NLRC5, MHC-I and IL-18 in LPS-treated groups were significantly up-regulated at 2 hours post stimulation (hps), TLR4 and NF-kB showed conspicuously up-regulated at 4 hps, while STAT1 was significantly down-regulated at 8 hps. Collectively, LPS did evoke inflammatory responses and NLRC5 may negatively regulate NF-kB and critically regulate MHC-I to control intracellular PAMPs in chicken macrophage cell line but the specific role of NLRC5 in host defense relates to cell types and species tested.

Keywords

Chicken Lipopplysaccharides NLCR5 Signaling pathway.

References

  1. Akira, S., Uematsu, S. and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124: 783-801.
  2. Benko, S., J.G. Magalhaes, D.J. Philpott, and S.E.Girardin. (2010). NLRC5 limits the activation of inflammatory pathways. J. Immunol., 185: 1681-1691.
  3. Beug, H., von Kirchbach, A., Döderlein, G., Conscience, J.–F. and Graf, T. (1979). Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell, 18: 375-390.
  4. Connolly, M.A., Clausen, P.A. and Lazar, J.G. (2006). Purification of RNA from animal cells using trizol. CSH Protoc., 2006: 10-15.
  5. Chang G.B., Chen, R., Luan, D.Q., Zhang, Y., Liu, X.P., Ma, T., Dai, A.Q., Zhou, W., Chen, G.H. (2011). Transcription change of chicken NLRC5 receptor and IFN genes initiated by bacterial endotoxins. Acta Veterinaria et Zootechnica Sinica, 42: 1598-1604.
  6. Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J. and Wang, R.F. (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell, 141: 483-496.
  7. Davis, B.K., Roberts, R.A., Huang, M.T., Willingham, S.B., Conti, B.J., Brickey, W.J., Barker, B.R., Kwan, M., Taxman, D.J., Accavitti-Loper, M.A., Duncan, J.A. and Ting J.P. (2011). Cutting edge: NLRC5-dependent activation of the inflammasome. J. Immunol., 186: 1333-1337.
  8. Fritz, J.H. and Girardin, S.E. (2005). How Toll-like receptors and Nod-like receptors contribute to innate immunity in. J. Endotoxin Res., 11: 390-394.
  9. Inohara, Chamaillard, McDonald, C. and Nunez, G. (2005). NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem., 74: 355-383.
  10. Janeway, C.A.. (1989). Pillars Article: Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harb Symp. Quant. Biol., 54: 1-13.
  11. Kaiser, P., Underwood, G. and Davison, F. (2003). Differential Cytokine Responses following Marek’s Disease Virus Infection of Chickens Differing in Resistance to Marek’s Disease. J. Virol., 77: 762-768.
  12. Kuenzel, S., Till, A., Winkler, M., Hasler, R., Lipinski, S., Jung, S., Grotzinger, J., Fickenscher, H., Schreiber, S. and Rosenstiel, P. (2010). The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in. J. Immunol., 184: 1990-2000.
  13. Kumar, H., Pandey, S., Zou, J., Kumagai, Y., Takahashi, K., Akira, S. and Kawai, T. (2011). NLRC5 deficiency does not influence cytokine induction by virus and bacteria. J. Immunol., 186: 994-1000.
  14. Lamkanfi, M. and Kanneganti T. D. (2012). Regulation of immune pathways by the NOD-like receptor NLRC5. Immunobiology, 217: 13-16.
  15. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and. Methods, 25: 402-408.
  16. Li, L., Xu, T., Huang, C., Peng, Y. and Li, J. (2014). NLRC5 mediates cytokine secretion in RAW264.7 macrophages and modulated by the JAK2/STAT3 pathway. Inflammation, 37: 835-847.
  17. Lian, L., Ciraci, C., Chang, G., Hu, J. and Lamont, S.J. (2012). NLRC5 knockdown in chicken macrophages alters response to LPS and poly (I:C) stimulation. BMC Vet. Res., 8: 23.
  18. Meissner, T.B., Li, A., Biswas, A., Lee, K.H., Liu, Y.J., Bayir, E., Iliopoulos, D., Elsen, PJvd. and Kobayashi, K.S. (2010). NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl. Acad. Sci., 107: 13794-13799.
  19. Mohamed L. and Vishva, M.D. (2009). Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev., 227: 95-105.
  20. Neerincx, A., Lautz, K., Menning, M., Kremmer, E., Zigrino, P., Hosel, M., Buning, H., Schwarzenbacher, R. and Kufer, T.A. (2010). A role for the human nucleotide-binding domain, leucine-rich repeat-containing. J. Biol. Chem., 285: 26223-26232.
  21. Philpott, D.J. and Girardin, S.E. (2004). The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol., 41: 1099-1108.
  22. Qiu, L.L., Xu, L., Guo, X.M., Li, Z.T., Wan, F., Liu, X.P., Chen, G.H. and Chang, G.B. (2016). Gene expression changes in chicken NLRC5 signal pathway associated with in vitro avian leukosis virus subgroup J infection. Genet. Mol. Res., 15: gmr.15017640.
  23. Qiu, L.L., Ma, T., Wang, H.Z., Xu, L., Liu, X.P., Chen, J., Guo, X.M., Li, Z.T., Wan, F., Chang, G.B. and Chen, G.H. (2015). Effects of bacterial endotoxins on transcription of NLRC5-related genes. Chinese J. Vet. Sci., 35: 1594-1599.
  24. Rietdijk, S.T., Burwell, T., Bertin, J. and Coyle, A.J. (2008). Sensing intracellular pathogens-NOD-like receptors. Curr. Opin. Pharmacol., 8: 261-266.
  25. Staehli, F., Ludigs, K., Heinz, L.X., Seguin-Estevez, Q., Ferrero, I., Braun, M., Schroder, K., Rebsamen, M., Tardivel, A., Mattmann, C., MacDonald, H.R., Romero, P., Reith, W., Guarda, G. and Tschopp, J. (2012). NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J. Immunol., 188: 3820-    3828.
  26. Yao, Y., Wang, Y., Chen, F., Huang, Y., Zhu, S., Leng, Q., Wang, H., Shi, Y. and Qian, Y. (2012). NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res., 22: 836-847.
  27. Zhu, L. (2011). Unveiling the mechanism of NLRs in negatively regulating the NF-kB and RLR-IFN pathways. (Doctor Thesis) Zhejiang University College of medicine, Zhengjiang, China.

Global Footprints