Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 5 (may 2020) : 553-557

Expression of Cardiac Specific Cell Marker in Ex Vivo Differentiated Canine iPSC

Purnima Singh, Tanmay Mondal, Kuldeep Kumar, Kinsuk Das, N. Mahalakshmi, A.P. Madhusoodan, Sadhan Bag
1Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly-243 122, Uttar Pradesh, India.
Cite article:- Singh Purnima, Mondal Tanmay, Kumar Kuldeep, Das Kinsuk, Mahalakshmi N., Madhusoodan A.P., Bag Sadhan (2019). Expression of Cardiac Specific Cell Marker in Ex Vivo Differentiated Canine iPSC. Indian Journal of Animal Research. 54(5): 553-557. doi: 10.18805/ijar.B-3829.
Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.
  1. Ali, S.R., Hippenmeyer, S., Saadat, L.V., Luo, L., Weissman, I.L. and Ardehali, R. (2014). Existing cardiomyocytes generate cardio-    myocytes at a low rate after birth in mice. Proc. Natl. Acad. Sci. USA 111, 8850-8855.
  2. Alipio, Z.,.Liao, W., Roemer, E.J., Waner, M., Fink, L.M., Ward, D.C., .Ma,Y. (2010). Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA, 107: 13426-13431.
  3. Bartolucci, S., Estenoz, M., De Franciscis, V., Carpinelli, P., Colucci, G.L., Tocco, G.A. and Rossi, M., 1989. Effect of cytidine analogs on cell growth and differentiation on a human neuroblastoma line. Cell biophysics, 15(1-2), 67-77.
  4. Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabeì-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B. A. and Druid, H. (2009). Evidence for cardiomyocyte renewal in humans. Science. 324: 98-102.
  5. Branch, S., Francis, B.M., Brownie, C.F. and Chernoff, N., (1996). Teratogenic effects of the demethylating agent 5-aza-22 -deoxycytidine in the Swiss Webster mouse. Toxicology, 112(1): 37-43.
  6. Garbern, J. C. and Lee, R. T. (2013). Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12: 689-698.
  7. Hakuno, D., Fukuda, K., Makino, S., Konishi, F., Tomita, Y., Manabe, T., Suzuki, Y., Umezawa, A. and Ogawa, S., (2002). Bone marrow–derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation, 105(3): 380-386.
  8. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M. and Jaenisch, R., (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologousskin. Science, 318(5858): 1920-1923.
  9. Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H. and Saitou, M., (2012). Offspring from oocytes derived from in vitro primordial germ cell–like cells in mice. Science, 338(6109): 971-975.
  10. Hoffman, A.M. and Dow, S.W. (2016). Concise review: stem cell trials using companion animal disease models. Stem Cells, 34 (7): 1709-    1729.
  11. Jones, P.A. and Taylor, S.M., (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell. 20: 85–93.
  12. Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogórek, B., Ferreira-Martins, J., et al (2010). Cardiomyogenesis in the adult human heart. Circ. Res. 107: 305-315.
  13. Lee, A.S., Xu, D., Plews, J.R., Nguyen, P.K., Nag, D., Lyons, J.K., Han, L., Hu, S., Lan, F., Liu, J. and Huang, M., (2011). Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. Journal of Biological Chemistry, 286(37): 32697-32704.
  14. Lompre AM, Schwartz K, d’Albis A, Lacombe G, Thiem NV, Swynghedauw B (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature. 282: 105-107.
  15. Lompre, A.M., Nadal-Ginard, B. and Mahdavi, V. (1984). Expression of the cardiac ventricular alpha- and beta-myosin heavy chain is developmentally and hormonally regulated. J Biol Chem, 259: 6437-6446. 
  16. Lompre, A.M., Schwartz, K., d’Albis, A., Lacombe, G., Van Thiem, N. and Swynghedauw, B. (1979). Myosin isoenzyme redistribution in chronic heart overload. Nature, 282: 105-107.
  17. Lyons, G. E., Schiaffino, S., Sassoon, D., Barton, P., and Buckingham, M. (1990). Developmental regulation of myosin gene expression in mouse cardiac muscle. The Journal of Cell Biology, 111(6): 2427-2436.
  18. Mahalakshmi, N., (2018). Propagation and differentiation potentiality of canine iPSC cultured on functionalized carbon nanotube scaffold. MVSc thesis. Deemed University, Indian Veterinary Research Institute Izatnagar Bareilly (UP) India.
  19. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H. and Hata, J.I., (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103(5): 697-705.
  20. Malliaras, K., Zhang, Y., Seinfeld, J., Galang, G., Tseliou, E., Cheng, K., Sun, B., Aminzadeh, M. and Marbán, E., (2013). Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Molecular Medicine, 5(2): 191-209.
  21. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L.S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J. and Hasenfuss, G., (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5): 507.
  22. Medvedev, S.P., Shevchenko, A.I. and Zakian, S.M., (2010). Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae, 2(2): 18–28.
  23. Mohandas, T., Sparkes, R.S. and Shapiro, L.J., (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211(4480): 393-396.
  24. Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L.T., Park, S.Y., Silberstein, L.E., et al (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proceedings of the National Academy of Sciences, 110(4): 1446-1451.
  25. Oh, H., Bradfute, S.B., Gallardo, T.D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L.H., Behringer, R.R., Garry, D.J. and Entman, M.L., (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences, 100(21): 12313-12318.
  26. Rangappa, S., Fen, C., Lee, E.H., Bongso, A. and Wei, E.S.K., (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of thoracic surgery, 75(3):775-779.
  27. Senyo, S.E., Lee, R.T. and Kühn, B., (2014). Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation.    Stem Cell Research, 13(3): pp.532-541.
  28. Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., Wu, T.D., et al (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432): 433-436.
  29. Walsh, S., Pontén, A., Fleischmann, B.K. and Jovinge, S. (2010). Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovascular research, 86(3): 365-373.
  30. Yanagimachi, M.D., Niwa, A., Tanaka, T., Honda-Ozaki, F., Nishimoto, S., Murata, Y., Yasumi, T., et al (2013). Robust and highly-    efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One 8, e59243. 
  31. Yoon, B.S., Yoo, S.J., EunLee, J., You, S., TaekLee, H., Hyun Yoon, H.S. (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation , 74: 149-159.
  32. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R. and Slukvin, I.I., (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917-    1920. 

Editorial Board

View all (0)