Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 5 (may 2020) : 608-613

Molecular detection of biofilm, virulence and antimicrobial resistance associated genes of Salmonella serovars isolated from pig and chicken of Mizoram, India

S. Chakraborty, P. Roychoudhury, I. Samanta, P.K. Subudhi, Lalhruaipuii, M. Das, A. De, S. Bandyopadhayay, S.N. Joardar, M. Mandal, A. Qureshi, T.K. Dutta
1College of Veterinary Sciences and Animal Husbandry, Central Agricultural University Imphal, Selesih, Aizawl-796 015, Mizoram, India. 
Cite article:- Chakraborty S., Roychoudhury P., Samanta I., Subudhi P.K., Lalhruaipuii, Das M., De A., Bandyopadhayay S., Joardar S.N., Mandal M., Qureshi A., Dutta T.K. (2019). Molecular detection of biofilm, virulence and antimicrobial resistance associated genes of Salmonella serovars isolated from pig and chicken of Mizoram, India. Indian Journal of Animal Research. 54(5): 608-613. doi: 10.18805/ijar.B-3817.
Salmonella has emerged as one of the most important food-borne pathogens for humans as well as animals and the ability of biofilm formation by these bacteria has further aided their survival in unfavorable environment. Characterization of these biofilm producing bacteria isolated from pigs and chicken may lead to formulation of strategies for prevention and control of Salmonella infections. Therefore, the present study was conducted to isolate Salmonella from pigs and poultry of Mizoram, determine their biofilm producing ability by phenotypic and genotypic methods along with their virulence and antimicrobial resistance properties. A total of 15 Salmonella spp. (pig=9, poultry=6) was isolated from 100 faecal samples from pigs and 50 cloacal swabs from poultry and biofilm producing ability of the isolates was determined by microtiter plate assay. A total of 10 (66.67%) isolates were found to be biofilm producer. All the biofilm producing bacterial isolates were investigated for antimicrobial sensitivity and distribution of selected biofilm associated genes (csgA, csgD and adrA), virulence genes (invA, stn and sefA) and antimicrobial resistance (AMR) genes (blaTEM, blaSHV and blaCTX-M). The most prevalent resistance was found against ceftazidime (80%), ceftriaxone (80%), cefixime (70%), cefotaxime (70%), gentamicin (70%), cotrimoxazole (60%) and ampicillin (60%). A total of 7 (70%) isolates were resistant to at least three different classes of antimicrobial agents and considered as multidrug resistant. All the isolates were positive for adrA (100%) but negative for csgA and csgD genes. The most frequent virulence gene was invA (100%) and stn (100%). Among the AMR genes, blaTEM  (60%) was found to be the major AMR determinants. Moreover, a total of 7 Salmonella isolates were   positive for at least one of t biofilm associated genes, virulence genes and AMR genes. 
  1. Akbari, M., Bakhshi, B., Peerayeh, S.N., Behmanesh, M. (2015). Detection of curli biogenesis genes among Enterobacter cloacae Isolated from blood cultures. J. Enteric. Pathog. 3(4): e28413.
  2. Barilli, E., Bacci, C., StellaVilla, Z., Merialdi, G., D’Incau, M., Brindani, F., Vismarra, A. (2018). Antimicrobial resistance, biofilm synthesis and virulence genes in Salmonella isolated from pigs bred on intensive farms. International Journal of Food Safety. 2(7): 131-137.
  3. Carattoli, A. (2013). Plasmids and the spread of resistance. Indian Journal of Medical Microbiology. 303: 298-304.
  4. CDC (2013). Centres for Disease Control and Prevention (CDC), Atlanta, USA.
  5. Charlebois, A., Jacques, M., Archambault, M. (2014). Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Frontiers in Microbiology. 5: 183-189.
  6. Chaudhary, J.H., Nayak, J.B., Brahmbhatt, M.N., Makwana, P.P. (2015). Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat. Veterinary World, 8(1): 121-126.
  7. Clinical and Laboratory Standards Institute, (2014). Performance standards for antimicrobial susceptibility testing; Twenty-fourth informational supplement. CLSI doc: M100-S24.
  8. Clothier, S.C., Muller, K.H., Doran, J.L., Collinson, S.K., Kay, W.W. (1993). Characterization of three fimbrial genes, sef ABC of Salmonella Enteritidis. Journal of Bacteriology. 175: 2523-2533.
  9. de Rezende, C.E., Anriany, Y., Carr, L.E., Joseph, S.W., Weiner, R.M. (2005). Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Applied and Environmental Microbiology. 71(11): 7345-7351.
  10. Edwards, R.A., Matlock, B.C., Heffernan, B.J., Maloy, S.R. (2001). Genomic analysis and growth-phase-dependent regulation of the SEF14 fimbriae of Salmonella enterica serovar Enteritidis. Microbiology. 147(10): 2705-2715.
  11. El-Sharkawy, H., Tahoun, A., El-Gohary, A.E.G.A., El-Abasy, M., El-Khayat, F., et al (2017). Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathogens. 9(1): 8-19.
  12. El-Tayeb, M.A., Ibrahim, A.S., Al-Salamah, A.A., Almaary, K.S., Elbadawi, Y.B. (2017). Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Brazilian Journal of Microbiology. 48(3): 499-508.
  13. Galan, J.E., Ginocchio, C., Costeas, P. (1992). Molecular and functional characterization of the Salmonella invasion gene invA: homology of invA to members of a new protein family. Journal of Bacteriology. 174, 4338-4349.
  14. García, V., García, P., Rodríguez, I., Rodicio, R., Rodicio, M.R. (2016). The role of IS26 in evolution of a derivative of the virulence plasmid of Salmonella enterica serovar Enteritidis which confers multiple drug resistance. Infection, Genetics and Evolution.    45: 246-249.
  15. Grantcharova, N., Peters, V., Monteiro, C., Zakikhany, K., Römling, U. (2010). Bistable expression of CsgD in biofilm development of Salmonella enterica serovar Typhimurium. Journal of Bacteriology. 192(2): 456-466.
  16. Krumperman, P.H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology. 46(1): 165-170.
  17. Kylla, H., Dutta, T. K., Roychoudhury, P., Subudhi, P. K. (2018). Salmonella enterica serovar Miami possessing both virulence and Extended-Spectrum â-Lactamase resistant genes isolated from diarrhoeic piglets of North east India (Mizoram). International Journal of Current Microbiology and Applied Sciences. 7(1): 1451-1456.
  18. Laufer, A.S., Grass, J., Holt, K., Whichard, J.M., Griffin, P.M., Gould, L.H. (2015). Outbreaks of Salmonella infections attributed to beef “United States, 1973–2011. Epidemiology and Infection. 143: 2003–2013.
  19. Mahanti, A., Ghosh, P., Samanta, I., Joardar, S.N., Bandyopadhyay, S., Bhattacharyya, D., et al (2018). Prevalence of CTX-M-Producing Klebsiella spp. in Broiler, Kuroiler, and Indigenous Poultry in West Bengal State, India. Microbial Drug Resistance. 24(3): 299-306.
  20. Marin, C., Hernandiz, A., Lainez, M. (2009). Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poultry Sciecnes. 88(2): 424-431.
  21. Mindlin, M.J., Lang, N., Maguire, H., Walsh, B., Verlander, N.Q., Lane, C., et al (2013). Outbreak investigation and case-control study: penta-resistant Salmonella Typhimurium DT104 associated with biltong in London in 2008. Epidemiology and Infection. 141: 1920–1927.
  22. Monstein, H.J., Östholm Balkhed, Å., Nilsson, M.V., Nilsson, M., Dornbusch, K. et al (2007). Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX M genes in Enterobacteriaceae. Apmis. 115(12): 1400-1408.
  23. Murugkar, H.V., Rahman, H., Dutta, P.K. (2003). Distribution of virulence genes in Salmonella serovars isolated from man and animals. Indian Journal of Medical Research. 117: 66-70.
  24. Murugkar, H.V., Rahman, H., Kumar, A., Bhattacharyya, D. (2005). Isolation, phage typing & antibiogram of Salmonella from man & animals in northeastern India. Indian Journal of Medical Research. 122(3): 237-242.
  25. Nair, A., Rawool, D. B., Doijad, S., Poharkar, K., Mohan, V., Barbuddhe, S. B., et al (2015). Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. Infection Genetics and Evolution.    S1567-1348(15): 335-364.
  26. Oliveira, S.D., Rodenbusch, C.R., Ce, M.C., Rocha, S.L.S., Canal, C.W. (2003). Evaluation of selective and non selective enrichment PCR procedures for Salmonella detection. Letters in Applied Microbiology. 36(4): 217-221.
  27. O’Regan, E., McCabe, E., Burgess, C., McGuinness, S., Barry, T., Duffy, G., Whyte, P., Fanning, S. (2008). Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC Microbiology. 8(1): 156-166.
  28. Pande, V.V., McWhorter, A.R., Chousalkar, K.K. (2016). Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. Biofouling. 32(7), 699-710.
  29. Paul, S., Bezbaruah, R.L., Roy, M.K., Ghosh, A.C. (1997). Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa. Letters in Applied Microbiology. 24(3): 169-171.
  30. Piras, F., Fois, F., Consolati, S.G., Mazza, R., Mazzette, R. (2015). Influence of temperature, source, and serotype on biofilm formation of Salmonella enterica isolates from pig slaughter houses. Journal of Food Protection. 78(10): 1875-1878.
  31. Prager, R., Fruth, A., Tschäpe, H. (1995). Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae. FEMS Immunology and Medical Microbiology. 12(1): 47-50.
  32. Quinn, P.J., Carter, M.E., Markey, B.K., Carter, G.R. (1994). In: Clinical Veterinary Microbiology. Wolf Publishing; London, UK: pp. 21 66.
  33. Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginocchio, C., Gyles, C.L. (1992). Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probe. 6(4): 271-279.
  34. Sanjukta, R., Dutta, J.B., Sen, A., Shakuntala, I., Ghatak, S., Puro, A.K., Das, S., et al (2016). Characterization of multidrug-resistant Escherichia coli and Salmonella isolated from food producing animals in North eastern India. International Journal of Infectious Diseases. 45: 114-115.
  35. Steenackers, H.P., Ermolat’ev, D.S., Savaliya, B., DeWeerdt, A., DeCoster, D., Shah, A., Van der Eycken, E.V., DeVos, D.E., Vanderle ydenm J., De Keersmaecker, S.C. (2011). Structure-activity relationship of 4(5)-aryl-2-amino-1H-imidazoles, N1-substituted 2-aminoimidazoles and imidazo[1,2-a]pyrimidinium salts as inhibitors of biofilm formation by Salmonella typhimurium and Pseudomonas aeruginosa. Journal of Medical Chemistry. 54(2):472-484.
  36. Stepanoviæ, S., Æirkoviæ, I., Ranin, L. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface.    Letters in Applied Microbiology. 38(5): 428-432.
  37. Sudhanthirakodi, S. (2016). Non-typhoidal Salmonella isolates from livestock and food samples, in and around Kolkata, India. Journal of Microbiology and Infectious Diseases. 6(3): 113-120.
  38. USDA Foreign Agricultural Service (2018). Available at:    consumption (accessed on 28th May 2018)
  39. Van Parys, A., Boyen, F., Verbrugghe, E., Leyman, B., Rychlik, I., Haesebrouck, F., Pasmans, F. (2010). Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA. Veterinary Microbiology. 144, 93-99.
  40. Verma, J.C., Gupta, B.R. (1996). Occurrence of Salmonella serotypes in animals in India-V. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases. 16: 104-108.
  41. Vestby, L.K., Møretrø, T., Langsrud, S., Heir, E., Nesse, L.L. (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC Veterinary Research. 5(1): 20.
  42. Weill, F.X., Demartin, M., Tandé, D., Espié, E., Rakotoarivony, I., Grimont, P.A. (2004). SHV-12-like extended-spectrum-â-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. Journal of Clinical Microbiology. 42(6): 2432-2437.
  43. Whyte, P., McGill, K., Collins, J.D., Gormley, E. (2002). The prevalence and PCR detection of Salmonella contamination in raw poultry. Veterinary Microbiology. 89(1): 53-60.
  44. Zhao, X., Ye, C., Chang, W., Sun, S. (2017). Serotype distribution, antimicrobial resistance, and class 1 integrons profiles of Salmonella from animals in slaughter houses in Shandong province, China. Frontiers in Microbiology. 8: 1049-1057.
  45. Ziech, R.E., Perin, A.P., Lampugnani, C., Sereno, M.J., Viana, C., Soares, V.M., et al (2016). Biofilm-producing ability and tolerance to industrial sanitizers in Salmonella spp. isolated from Brazilian poultry processing plants. LWT-Food Science Technology. 68: 85-90.

Editorial Board

View all (0)