Development and Standardization of Visual Loop Mediated Isothermal Amplification (LAMP) Essay for Specific Diagnosis of Johne’s Disease

DOI: DOI: 10.18805/ijar.B-3775    | Article Id: B-3775 | Page : 293-299
Citation :- Development and Standardization of Visual Loop Mediated Isothermal Amplification (LAMP) Essay for Specific Diagnosis of Johne’s Disease.Indian Journal Of Animal Research.2020.(54):293-299
Manju Singh, Saurabh Gupta, Shoor Vir Singh, Gururaj Kumaresan, Deepansh Sharma, G.K. Aseri, Parul Yadav, Rathnagiri Polavarapu, Jagdip Singh Sohal jssohal@jpr.amity.edu
Address : Amity Center for Mycobacterial Disease Research, Amity Institute of Microbial Technology, Amity University Rajasthan, Kant-Kalwar, NH-11C Delhi-Jaipur Highway, Jaipur-303 002, Rajasthan, India.
Submitted Date : 31-12-2018
Accepted Date : 30-05-2019

Abstract

Mycobacterium avium subspecies paratuberculosis (MAP), causative agent of Johne’s disease (JD) is chronic granulomatous enteritis affecting domestic and wild ruminants. Since, MAP is not killed by pasteurization, it has been isolated from commercially pasteurized milk and milk products resulting exposure of human population to this pathogen through milk. Control and eradication of JD is considered difficult because of its insidious nature and lack of early, rapid and accurate diagnostic tests. Therefore in present study, a visual loop-mediated isothermal amplification (LAMP) assay method has been developed using a total of six primers including 2 outer (F3 and B3), 2 inner (FIP and BIP) and 2 loop (LF and LB) primers specific for MAP  for the first time on ‘S 5’ strain of Mycobacterium avium subsp. paratuberculosis ‘Indian Bison type’ biotype. After laboratory standardization, final optimized reaction performed at 65°C for 45 min was achieved after titration of incubation time, temperature conditions and the reporter dye calcein. Sensitivity and specificity of the LAMP assay was optimized and compared with traditional IS900 PCR. The sensitivity of LAMP assay was found to detect 10fg (100%) of DNA and 95.7% specificity was recorded with respect to traditional IS900 PCR. Comparison showed that LAMP had 98.6% and 96.1% sensitivity and specificity of 96.1% and 92.3%, with respect to microscopy and culture exhibiting ‘Almost perfect’ strength of agreement. The study concluded that LAMP assay was a reliable and sensitive diagnostic test to detect MAP infection in feces and can also be used for the ‘mass screening’ of the milk samples with the help of less expertise.

Keywords

Johne’s disease (JD) LAMP PCR Mycobacterium avium subspecies paratuberculosis (MAP)

References

  1. Ahlstrom, C., Barkema, H.W., Stevenson, K., Zadoks, R.N., Biek, R., Kao, R., Trewby, H., et al (2015). Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level. BioMed Central, 16: 161.
  2. Chaubey, K.K., Gupta, R.D., Gupta, S., Singh, S.V., Bhatia, A.K., Jayaraman, S., Kumar, N., et al (2016). Trends and advances in the diagnosis and control of paratuberculosis in domestic livestock. Veterinary Quarterly, 36: 203-227.
  3. Chaubey, K.K., Singh, S.V., Gupta, S., Singh, M., Sohal, J.S., Kumar, N., Singh, M.K., Bhatia, A.K. and Dhama, K. (2017). Mycobacterium    avium subspecies paratuberculosis–an important food borne pathogen of high public health significance with special reference to India: an update. Veterinary Quarterly, 37: 282-299.
  4. Cutis, K.A., Rudolph, D.L.andOmen, S.M. (2008). Rapid detection of HIV-1 by Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). Journal of Virological Methods, 151: 264-270.
  5. Dhama, K., Karthik, K., Chakraborty, S., Tiwari, R., Kapoor, S., Kumar, A. and Thomas, P. (2014). Loopmediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review. Pakistan Journal of Biologiacal Sciences, 17: 151-166.
  6. Dhanasekaran, S., Chandran, S.P. and Kenneth, J. (2011). Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. Journal of Microbiological Methods, 84: 71-73.
  7. Dukes, J.P., King, D.P. and Alexandersen, S. (2006). Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Archives of Virology, 151: 1093-1106.
  8. Enosawa, M., Kageyama, S., Sawai, K., Watanabe, K., Notomi, T. and Onoe, S. (2003). Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis. Journal of Clinical Microbiology, 41: 4359-4365.
  9. Giese, S.B. and Ahrens, P. (2000). Detection of Mycobacterium avium subsp. paratuberculosis in milk from clinically affected cows by PCR and culture. Veterinary Microbiology, 77: 291-297.
  10. Gilardoni, L.R., Fernandez, B., Jar, A.M., Morsella, C., Cirone, K., Paolicchi, F. and Mundo, S.L. (2009). Mycobacterium avium subsp. paratuberculosis capture from milk using monoclonal and polyclonal antibodies linked to immunomagnetic beads. Reunión de la Sociedad Latinoamericana de Tuberculosis y otras Micobacteriosis (SLAMTB) 2009. Resumen p. 72, Rosario, Argentina.
  11. Greenstein, R.J. (2003). Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis and Johne’s disease. Lancet Infectious Diseases, 3: 507-514.
  12. Gupta, S., Singh, S.V. and Bhatia, A.K. (2016). Immuno-Reactivity pattern of secretory proteins of Mycobacterium Avium Subspecies Paratuberculosis Vaccine Strain ‘S 5’ with Potential for diagnosis of Johne’s Disease in early infection”. Indian Journal of    Biotechnology, 15: 306-312.
  13. Hagiwara, M., Sasaki, H., Matsuo, K., Honda, M., Kawase, M. and Nakagawa, H. (2007). Loop-Mediated Isothermal Amplification method for detection of human papillomavirus type 6, 11, 16 and 18. Journal of Medical Virology, 79: 605-615.
  14. Heidarnejhad, O., Safi, S., Mosavar, N., Sakha, M. and Afshar, D. (2015). Development of a loop-mediated isothermal amplification (LAMP) assay for rapid, simple and sensitive detection of Mycobacterium avium subsp. paratuberculosis. International Journal of Biosciences, 6: 126-135.
  15. Hermel, S.R. (1998). Testing for Johne’s. Angus Journal, 3: 194.
  16. Ihira, M., Akimoto, S., Miyake, F., Fujita, A. and Sugata, K. (2007). Direct detection of human herpesvirus 6 DNA in serum by the loop-mediated isothermal amplification method. Journal of Clinical Virology, 39: 22-26.
  17. Jakobsen, M.B., Alban, L. and Nielsen, S.S. (2000). A cross-sectional study of paratuberculosis in 1155 Danish dairy cows. Preventive Veterinary Medicine, 46: 15-27.
  18. Kalis, C.H.J., Collins, M.T., Hesselink, J.W. and Barkema, H.W. (2003). Specificity of two tests for the early diagnosis of bovine paratuberculosis based on cell–mediated immunity: the Johnin skin test and the gamma interferon assay. Veterinary Microbiology,    97: 73-86.
  19. Kaneko, H., Kawana, T., Fukushima, E. and Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70: 499-501.
  20. Karthik, K., Rathore, R., Thomas, P., Arun, T.R., Viswas, K.N., Agarwal, R.K., Manjunathachar, H.V. and Dhama, K. (2014). Loop mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucellaabortus in cattle. Veterinary Quarterly, 34: 174-179. 
  21. Khan, M.G., Bhaska, K.R., Salam, M.A., Akther, T., Pluschke, G., Mondal, D. (2012). Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for detection of Leishmania DNA in buffy coat from visceral leishmaniasis patients. Parasites and Vectors, 35: 280.
  22. Kubo, T., Agoh, M., Le Mai, Q., Fukushima, K. and Nishimura, H. (2010). Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. Journal of Clinical Microbiology, 48: 728-735.
  23. Millar, D.S., Withey, S.J., Tizard, M.L.V., Ford, J.G. and Hermon-Taylor, J. (1995). Solid-phase hybridization capture of low-abundance target DNA sequences: application to the polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp silvaticum. Analytical Biochemistry, 226: 325-330.
  24. Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T. and Notomi, T. (2001). Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry, 47: 1742-1743.
  25. Njiru, Z.K. (2012). Loop-mediated isothermal amplification technology: Toward point of care diagnostics. PLOS Neglected Tropical Diseases, 6: 1572.
  26. Njiru, Z.K., Mikosza, A.S., Matovu, E., Enyaru, J.C., Ouma, J.O., Kibona, S.N., Thompson, R.C. and Ndung’u, J.M. (2008). African trypanosomiasis: Sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. International Journal of Parasitology, 38: 589-599.
  27. Parida, M., Posadas, G., Inoue, S., Hasebe, F., Morita, K. (2004). Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. Journal of Clinical Microbiology, 42: 257-263.
  28. Safi, S., Heidarnejhad, O., Mosavari, N., Sakha, M., Afshar, D., Moazami, L., Meshkat, M., et al (2015). Comparative evaluation of LAMP and Nested-PCR for the diagnosis of bovine paratuberculosis. International Journal of Microbiology, 4: 98-99.
  29. Sahoo, P.R., Sethy, K., Mohapatra, S., Panda, D. (2016). Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Veterinary World, 9: 465-469.
  30. Salim, M. A., Akhtar, R., Lateef, M., Rashid, M. I., Akbar, H., Shehzad, W., Akhtar, F., Islam, S., et al (2018). First report on optimization    of loop-mediated isothermal amplification (LAMP) for the diagnosis of Babesia felis. Indian Journal of Animal Research,    52: 401-404.
  31. Sechi, L.A. and Dow, C.T. (2015). Mycobacterium avium ss. paratuberculosis zoonosis, the hundred year war beyond Crohn’s disease. Frontiers in Microbiology, 6: 1-8.
  32. Singh, M., Gupta, S., Singh, S.V., Chaubey, K.K., Sohal, J.S. and Dhama, K. (2018). Bio-incidence of Mycobacterium avium subspecies paratuberculosis in the pasteurized liquid milk, flavoured milk and milk powder commercially sold by leading market brands in India. Journal of Experimental Biology and Agricultural Sciences, 6: 188-203.
  33. Singh, N., Singh, S.V., Gupta, V.K., Sharma, V.D., Sharma, R.K. and Katoch, V.M. (1996). Isolation and identification of Mycobacterium paratuberculosis from naturally infected goatherds in India. Indian Journal of Veterinary Pathology, 20: 104-108.
  34. Singh, P. K., Singh, S. V., Kumar, H., Sohal, J. S. and Singh, A. V. (2010). Diagnostic application of IS900 PCR using blood as a source sample for the detection of Mycobacterium avium Subspecies Paratuberculosis in early and subclinical cases of caprine Paratuberculosis. Veterinary Medicine International, 2010:748621. Doi: 10.4061/2010/748621.
  35. Singh, S.V., Singh, P.K., Singh, A.V., Sohal, J.S. and Gupta, V.K. (2007). Comparative efficacy of an indigenous ‘Inactivated vaccine’ using highly pathogenic field strain of Mycobacterium avium subspecies paratuberculosis ‘Bison type’ with a commercial vaccine for the control of Capri - Paratuberculosis in India. Vaccine, 25: 7102-7110.
  36. Singh, S.V., Singh, P.K., Singh, A.V., Sohal, J.S. and Kumar, N. (2014a). Bio-load and bio-type profiles of Mycobacterium avium subspecies paratuberculosis infection in the domestic livestock population endemic for Johne’s disease: A survey of 28 years (1985-2013) in India. Transboundary and Emerging Diseases, 61: 43-55.
  37. Singh, S.V., Sohal, J.S., Kumar, N., Gupta, S., Chaubey, K.K., Rawat, K.D., Chakraborty, S., Tiwari, R. and Dhama, K. (2014b). Recent approaches in diagnosis and control of Mycobacterial infections with special reference to Mycobacterium avium subspecies paratuberculosis. Advances in Animal and Veterinary Sciences, 2: 1-11.
  38. Tiwari, A., Vanleeuwen, J.A., McKenna, S.L.B., Keefe, G.P. and Barkema, H.W. (2006). Johne’s disease in Canada. Part I. Clinical symptoms, pathophysiology, diagnosis,and prevalence in dairy herds. Canadian Veterinary Journal, 47: 874-882.
  39. van Embden, J. D., Cave, M. D., Crawford, J. T., Dale, J. W., Eisenach, K. D., Gicquel, B., et al (1993). Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. Journal of Clinical Microbiology, 31: 406.
  40. Wells, S.J., Collins, M.T., Faaberg, K.S., Wees, C., Tavornpanich, S., Petrini, K.R. and Whitlock, R.H.(2006). Evaluation of a rapid fecal PCR test for detection of Mycobacterium avium subsp. paratuberculosis in dairy cattle. Clinical and Vaccine Immunology, 13: 1125-1130.
  41. WoŸniakowski, G. and Samorek-Salamonowicz, E. (2014). Direct detection of Marek’s disease virus in poultry dust by loop-mediated isothermal amplification. Archives of Virology, 159: 3083-3087.
  42. Yamazaki, W., Mioulet, V., Murray, L., Madi, M., Haga, T., Misawa, N., Horii, Y. and King, D.P. (2013). Development and evaluation of multiplex RT–LAMP assay for rapid and sensitive detection of foot–and–mouth disease. Journal of Virological Methods, 192: 18-24.
  43. Zimmer, K., Drager, K.G., Klawonn, W. and Hess, R.G. (1999). Contribution to the diagnosis of Johne’s disease in cattle. Comparative studies on the validity of Ziehl-Neelsen staining, faecal culture and a commercially available DNA-Probe test in detecting Mycobacterium paratuberculosis in faeces from cattle. Zentralblatt fur Veterinarmedizin. Reihe B, 46: 137-140.

Global Footprints