Identification of Genetic Variants in ABCG2 Gene Influencing Milk Production Traits in Dairy Cattle

DOI: 10.18805/ijar.B-3770    | Article Id: B-3770 | Page : 275-281
Citation :- Identification of Genetic Variants in ABCG2 Gene Influencing Milk Production Traits in Dairy Cattle.Indian Journal Of Animal Research.2020.(54):275-281
Arun Pratap Singh, A.K. Chakravarty, M.A. Mir, Ashwani Arya and Manvendra Singh drapsndri@gmail.com
Address : Department of Livestock Production and Management, Krishi Vigyan Kendra, Ajmer-305 206, Rajasthan, India.
Submitted Date : 20-12-2018
Accepted Date : 14-01-2019

Abstract

This study was performed to investigate the polymorphisms in the ABCG2 (ATP-binding cassette sub-family G member 2) gene and to reveal the association of genotypes with breeding value (BV) for first lactation milk yield and milk composition traits of Karan Fries (HF crossbred) cattle. The traits were adjusted against the significant effect of non-genetic factors. PCR-RFLP analysis of ABCG2 (exon 14) gene revealed three genotypes. AA genotype in ABCG2 gene had significant effect on BV for average test day fat percentage. The identified potential genetic marker could be used for the development of Marker Assisted Selection (MAS) strategy for higher milk yield and milk composition traits in Karan Fries Cattle.

Keywords

ABCG2 gene Karan Fries Cattle Milk Production Traits PCR-RFLP

References

  1. Banos, G., Woolliams, J.A., Woodward, B.W., Forbes, A.B., Coffey M.P. (2008). Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. Journal of Dairy Science, 91: 3190-3200.
  2. Cohen-Zinder, M., Seroussi, E., Larkin, D.M., Loor, J.J., Everst-Van Der Wind, A., Lee, J.H., Drackley, J.K., Band, M.R., Hernandez, A.G., Shani, M., Lewin, H.A., Weller, J.I., Ron, M. (2005). Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Research, 15: 936-44.
  3. Dekkers, J.C.M., Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics, 3 (1): 22-32.
  4. Divya, P. (2012). Single versus multi-trait models for genetic evaluation of fertility traits in Karan fries cattle. M.V.Sc Thesis, National Dairy Research Institute (Deemed University), Karnal, India.
  5. Farke, C., Meyer, H.H., Bruckmaier, R.M., Albrecht, C. (2008). Differential expression of ABC transporters and their regulatory genes during lactation and dry period in bovine mammary tissue. Journal of Dairy Research, 75: 406-414.
  6. Fontanesi, L., Scotti, E., Samore, A.B., Bagnato, A., Russo, V. (2015). Association of 20 candidate gene markers with milk production and composition traits in Sires of Reggiana breed, a local dairy cattle population. Livestock Science, 176: 14-21.
  7. Harvey, W.R. (1990). Guide for LSMLMW, PC-1version, mixed model least squares and maximum likelihood computer programme, January 1990. Mimeograph Ohio State., university, USA.
  8. Jonker, J.W., Merino, G., Musters, S., Van Heraarden, A.E., Bolscher, E., Wagenaar, E., Mesman, E., Dale, T.C., Schinkel, A.H. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Medicine, 11: 127-129.
  9. Kgwatalala, P.M., Ieagha-Awamu, E.M., Mustafa, A.F., Zhao, X. (2009). Influence of stearoyl-coenzyme A desaturase 1 genotype and stage of lactation on fatty acid composition of Canadian Jersey cows. Journal of Dairy Science, 92: 1220-1228.
  10. Kokate, L. (2009). Genetic evaluation of Karan Fries sires based on test day milk yield records. M.V.Sc Thesis, National Dairy Research Institute (Deemed University), Karnal, India.
  11. Komisarek, J., Dorynek, Z. (2009). Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50: 125-132.
  12. Kramer, C.V. (1957). Extension of multiple range tests to group croobred means. Biometrics, 13: 13-18.
  13. Litman, T., Brangi, M., Hudson, E., Fetch, P., Abati, A., Ross,D.D., Miyake, K., Resau, J.H., Bates, S.E. (2000). The multidrug-resistant phenotype associated with overexpresion of the new ABC half-transporter, MXR (ABCG2). Journal of Cell Science, 113: 2011-2021.
  14. Meyer, K. (2007). WOMBAT- A tool for mixed model analyses in quantitative genetics by REML. J. Zhejiang Uni. Sci., 8: 815-821.
  15. Mishra, S.S. (2001). Genetic studies on certain milk constituents of Karan Fries cattle. M.Sc. Thesis, National Dairy Research Institute (Deemed University), Karnal, India.
  16. Missanjo, E.M., Imbayarwo-Chikosi, V.E., Halimani, T.E. (2010). Genetic and phenotypic evaluation of Zimbabwean Jersey cattle towards the development of a selection index. Second RUFORUM Biennial Meeting 20 - 24 September 2010, Entebbe, Uganda: 1110-1112.
  17. Mousavizadeh, S.A., Salehi, A., Aminafshar, M., Sayyadnejad, M.B., Nazemshirazi, M.H. (2013). Novel SNPs of the ABCG2 gene and their associations with milk production traits in Iranian Holstein bulls. Journal of Agricultural Science and Technology, 15: 1145-1151.
  18. Nehra, M. (2011). Genetic analysis of performance trends in Karan Fries cattle. M.V.Sc. Thesis, National Dairy Research Institute (Deemed University) Karnal, India.
  19. Nyamushambaa, G.B., Tavirimirwab, B., Bananac, N.Y.D. (2013). Non-genetic factors affecting milk yield and composition of Holstein-    Friesian cows nested within natural ecological regions of Zimbabwe. Journal of Animal Science, 2(5): 102-108.
  20. Olsen, H.G., Lien, S., Gautier, M., Nilsen, H., Roseth, A., Berg, P.R., Sundaasen, K.K., Svendsen, M., Meuwissen, T.H. (2005). Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics, 169: 275-283.
  21. Olsen, H.G., Nilsen, H., Hayes, B., Berg, P.R., Svendsen, M., Lien, S., Meuwissen, T. (2007). Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genomics, 8: 32.
  22. Radhika, G., Ajithkumar, S., Rani, A., Sathian, C.T., Anilkumar, K., Usha, A.P., Dinesh, C.N. (2012). Milk yield and composition of crossbred cows in the hilly Wayanad district of Kerala, India. Indian Journal of Animal Science, 82(10): 1251–1254.
  23. Rekik, B., Bouraoui, R., Gara, A.B., Hammami, H., Hmissi, M., Rouissi, H. (2009). Milk Production of Imported Heifers and Tunisian-    Born Holstein Cows. American-Eurasian Journal of Agricultural and Environmental Sciences, 2(1): 36-42.
  24. Ron, M., Cohen-Zinder, M., Peter, C., Weller, J.I., Erhardt, G. (2006). A polymorphism in ABCG2 in Bos indicus and Bos taurus cattle breeds. Journal of Dairy Science, 89: 4921-4923.
  25. Sambrook, J., Russell, W.D. (2001). Molecular Cloning- A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1, 1.32-1.34 and 8.14.
  26. Sarkar, U., Gupta, A.K., Sarkar, V., Mohanty, T.K., Raina, V.S., Prasad, S. (2006). Factors affecting test day milk yield and milk composition in dairy animals. J. dairying, foods and home
  27. SAS Enterprise Guide 4.3. (2003). SAS Institute Incorporation Raleigh, North Carolina, U.S.A. Sci., 25(2): 129-132.
  28. Singh, O.P. (1983). Climate of Karnal. Published by Central Soil Salinity Research Institute (ICAR), Karnal, India.
  29. Singh, A. (2014). Genetic evaluation of Karan-fries cattle using test day milk yields by random regression models. M.V.Sc. Thesis, National Dairy Research Institute (Deemed University), Karnal, India.
  30. Soltani-Ghombavani, M., Ansari-Mahyari, S., Rostami, M., Ghanbari-Baghenoei, S., Edriss, M. A. (2016). Effect of polymorphisms in the ABCG2, LEPR and SCD1 genes on milk production traits in Holstein cows. South African Journal of Animal Science, 46 (2): 196-203.
  31. Tantia, M.S., Vijh, R.K., Mishra, B.P., Mishra, B., Kumar, S.T., Sodhi M. (2006). DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) breeds. BMC Veterinary Research, 2: 32.
  32. Tripathy, S. S., Chakravarty, A.K., Mir, M. A., Singh, A. P., Jamuna, V., Lathika S. (2017). Genetic and Non-Genetic parameters of first lactation milk yield, composition and energy Traits in Karan-Fries Cattle. Journal of Animal Research, 7(1): 49-57.
  33. Verma, D. K., Kumar, P., Singh, A. (2014). Effect of pregnancy, lactation stage, parity and age on yield and components of raw milk in Holstein Friesian cows in organized dairy form in Allahabad. Journal of Agriculture and Veterinary Science, 7(2): 112-115.
  34. Yeh, F.C., Yang, R.T.J., Xiyan, J.M. (2000). PopGene32. Microsoft Window-based Freeware for Population Genetic Analysis, Version 1.32 (Software). University of Alberta, Edmonton, AB.
  35. Yue, W., Fang, X., Zhang, C., Pang, Y., Xu, H., Gu, C., Shao, R., Lei, C., Chen, H. (2011). Two novel SNPs of the ABCG2 gene and its associations with milk traits in Chinese Holsteins. Molecular Biology Reports, 38: 2927-2932.
  36. Yurchenko, A. A., Daetwyler, H. D., Yudin, N., Schnabel, R. D., Jagt, C. J. V., Soloshenko, V., et al., (2018). Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific Reports, 8: 1-16. 

Global Footprints