Identification of very virulent marek’s disease virus strains in India by sequence analysis of 132 bp repeats of BamH-HI region

DOI: 10.18805/ijar.B-3652    | Article Id: B-3652 | Page : 1382-1385
Citation :- Identification of very virulent marek’s disease virus strains in India by sequence analysis of 132 bp repeats of BamH-HI region.Indian Journal Of Animal Research.2019.(53):1382-1385
Venkataramireddy Balena, M.R Reddy, Rajendra Singh, M. Asok Kumar, M. Palanivelu, M. Karikalan, B.C. Parthasarathi and Snehil Gupta balenapath@gmail.com
Address : Directorate of Poultry Research, Hyderabad-500 030, Telangana, India.
Submitted Date : 4-06-2018
Accepted Date : 13-11-2018

Abstract

The present study was aimed to screen the poultry samples for MDV (Marek’s disease virus) from Directorate of Poultry Research poultry farms (DPRF) and commercial poultry farms (CPF) in and around Hyderabad. The MDV was diagnosed with polymerase chain reaction using primers targeting for 132 bp repeats of BamHI-H region. The product of 302 bp and 434 bp were amplified in DPRF and CPF samples. Analysis of sequenced nucleotide data showed that the difference exist due to the presence of one or two repeats of 132 bp repeats in BamH-HI region. The homology was observed between all Indian and other published strains for 132 bp repeats of BamH-HI region. The percent of identity of DPR-2 (CPF) was 96.7 and 100% with DPR-3 (DPRF) and MDV-Anand4 isolate, respectively. The phylogenetic analysis of 132 bp repeats of BamH-HI Region of MDV revealed that the DPR-3(DPRF), DPR-2(CPF) and other Indian strains were clustered with very virulent plus pathogenic strain (584A), very virulent strains (595 and Md5) and virulent to moderate pathogenic strains, respectively. The present study seems the first report for the identification of single 132 bp repeats of MDV strains in India. This virulence may be due to the continuous adaptation of virus in poultry birds of different age groups and breeds maintained in DPR poultry farms. Therefore, there is a need to develop a new strategy and vaccines for birds against new highly virulent strains of the virus. 

Keywords

Marek’s disease PCR 132 bp repeats Virulent strains

References

  1. Abd-Ellatieff, H. A., Abou Rawash, A. A., Ellakany, H. F., Goda, W. M., Suzuki, T. and Yanai, T. (2018). Molecular characterization and phylogenetic analysis of a virulent Marek’s disease virus field strain in broiler chickens in Japan. Avian Pathol. 47: 47-57.
  2. Becker, Y., Asher, Y., Tabor, E., Davidson, I., Malkinson, M. and Weisman, Y. (1992). Polymerase chain reaction for differentiation between pathogenic and non-pathogenic serotype 1 Marek’s disease viruses (MDV) and vaccine viruses of MDV-serotypes 2 and 3. J. Virol. Methods. 40: 307-322.
  3. Becker, Y., Tabor, E., Asher, Y., Davidson, I., Malkinson, M. and Witter, R. L. (1993). PCR detection of amplified 132 bp repeats in Marek’s disease virus type 1 (MDV-1) DNA can serve as an indicator for critical genomic rearrangement leading to the attenuation of virus virulence. Virus Genes. 7: 277-287.
  4. Davison, A. J., Eberle, R., Ehlers, B., Hayward, G., McGeoch, D., Minson, A., Pellett, P., Roizman, B., Studdert, M. and Thiry, E. (2009). The order Herpesvirales. Arch. Virol. 154: 171-177.
  5. Davison, F., and Nair, V. (2005). Use of Marek’s disease vaccines: could they be driving the virus to increasing virulence?. 77-88.
  6. Fukuchi, K., Sudo, M., Lee, Y. S., Tanaka, A. and Nonoyama, M.. (1984). Structure of Marek’s disease virus DNA: detailed restriction enzyme map. J. Virol. 51: 102-109. 
  7. Gupta, M. and Deka, D. (2016). Sequence analysis of Meq oncogene among Indian isolates of Marek’s disease herpesvirus. Meta gene, 9: 230-236.
  8. Jayalakshmi, K. and Selvaraju, G. (2016). Epidemiology of Marek’s disease in commercial layer flocks. J. Cell Tissue Res. 16: 5811-5815.
  9. Jayalakshmi, K., Selvaraju, G., Dinakaran, A.M., Murthy, T.R., Geetha, M. and Saravanan, S. (2010). Comparision of polymerase chain reaction and agar gel immunodiffusion test in detection of marek’s disease virus. Vet World. 3: 212-214. 
  10. Kalyani, I. H., Joshi, C. G., Jhala, M. K., Bhanderi, B. B. and Purohit, J. H. (2011). Characterization of 132 bp repeats BamH1-H region in pathogenic Marek’s disease virus of poultry in Gujarat, India, using PCR and sequencing. Indian J Virol. 22: 72-75.
  11. Kanamori, A., Nakajima, K., Ikuta, K., Ueda, S., Kato, S. and Hirai, K. (1986). Copy number of tandem direct repeats within the inverted repeats of Marek’s disease virus DNA. Biken J. 29: 83-89.
  12. Lebdah, M. A., Nassif, S. A., Shahein, A. M. and El-Basrey, Y. F. (2017). Isolation and Identification of Very Virulent Strains of Marek’s Disease Virus from MDV-Vaccinated Flocks in Egypt. Zag. Vet. J. 45: 197-205.
  13. Maotani, K., Kanamori, Ikuta K., Ueda S., Kato S., and Hirai K. (1986) Amplification of a tandem direct repeat within inverted repeats of Marek’s dis-ease virus DNA during serial in vitro passage. J. Vi-rol. 58:657-660. 1986.
  14. Muniyellappa, H. K., Satyanarayana, M. L., Isloor, S. and Gowda, N. S. (2013). Marek’s disease outbreak among vaccinated commercial layer flocks in the mining area of Karnataka, India. Vet. Rec. 172: 452.
  15. Ross, N., Binns, M. M., Sanderson, M. and Schat, K. A. (1993). Alterations in DNA sequence and RNA transcription of the BamHI-    H fragment accompany attenuation of oncogenic Marek’s disease herpesvirus. Virus Genes 7:33-51.
  16. Sadeghi, M. R., Ghorashi, S. A., Kargar Moakhar, R., Morshedi, D., Salehi Tabar, R., and Ghaemmaghami, S. S. (2006). Polymerase chain reaction for the detection and differentiation of Marek’s disease virus strains MDV-1 and HVT. Iran J. Vet. Res. 7: 17-21.
  17. Sambrook, J. and Russell, D. W., (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
  18. Silva, R. E, and WitterR. L. (1985). Genomic ex-pansion of Marek’s disease virus DNA is associated with serial in vitro passage. J. Virol. 54: 690-696.
  19. Silva, R.F. and Gimeno, I. (2007). Oncogenic Marek’s disease viruses lacking the 132 base pair repeats can still be attenuated by serial in vitro cell culture passages. Virus Genes, 34: 87-90.
  20. Sun, G. R., Zhang, Y. P., Lv, H. C., Zhou, L. Y., Cui, H. Y., Gao, Y. L., Qi, X. L., Wang, Y. Q., Li, K., Gao, L. and Pan, Q. (2017). A Chinese variant Marek’s disease virus strain with divergence between virulence and vaccine resistance. Viruses. 9: 71.
  21. van Iddekinge, B. H., Stenzler, L., Schat, K. A., Boerrigter, H. and Koch, G. (1999). Genome analysis of Marek’s disease virus strain CVI-988: effect of cell culture passage on the inverted repeat regions. Avian Dis. 43: 182-188.
  22. Witter, R. L. (1996). Avian tumor viruses: persistent and evolving pathogens. Acta Vet. Hung. 45: 251-266.
  23. Zelník, V. (2003). Marek’s disease virus research in the post-sequencing era: new tools for the study of gene functions and virus–host interactions. Avian Pathol. 32: 323-333.
  24. Zhu, G. S., Ojima, T., Hironaka, T., Ihara, T., Mizukoshi, N., Kato, A., Ueda, S. and Hirai, K. (1992). Differentiation of oncogenic and nononcogenic strains of Marek’s disease virus type 1 by using polymerase chain reaction DNA amplification. Avian Dis. 36: 637-645. 

Global Footprints