Hepatoprotective effect of seabuckthorn leaf extract in streptozotocin induced diabetes mellitus in Wistar rats

DOI: 10.18805/ijar.B-3439    | Article Id: B-3439 | Page : 1745-1750
Citation :- Hepatoprotective effect of seabuckthorn leaf extract in streptozotocin induced diabetes mellitus in Wistar rats.Indian Journal Of Animal Research.2018.(52):1745-1750
P. Khajuria, P. Raghuwanshi, A. Rastogi, A.L. Koul, R. Zargar and S. Kour pratiksha.rastogi@gmail.com
Address : Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology R.S. Pura, Jammu-180 009, Jammu and Kashmir, India.
Submitted Date : 19-05-2017
Accepted Date : 22-11-2017

Abstract

Study was conducted to evaluate the hepatoprotective effects of Seabuckthorn leaf extract (SLE) supplementation on serum enzymatic levels in streptozotocin (STZ) induced diabetes mellitus in Wistar rats. Thirty-two adult male Wistar rats were divided into four groups namely CON (negative control), SCO (Seabuckthorn control), DCO (Diabetic control), and DSL (Diabetic seabuckthorn treatment group). Diabetes mellitus was induced by single intra peritoneal injection of STZ @ 50 mg/kg body weight in DCO and DSL group of rats. SLE was administered orally @ 100mg/kg body weight for 40 days to SCO and DSL groups. CON served as the negative control. Blood samples were collected from experimental animals on zero, 20th, and 40th days of trial to study liver specific serum enzyme profile viz aspartate amino transaminase (AST), alanine amino transaminase (ALT), alkaline phosphatase (ALP) and acid phosphatase (ACP). Significantly (P<0.01) higher levels of all the enzymes studied were observed in experimentally induced diabetic rats in comparison to normal rats. However, in SLE treated diabetic rats (DSL group), significant (P<0.01) improvement was observed in all the above enzymes. It may be concluded that SLE exerts hepatoprotective effect in STZ induce Diabetes mellitus in Wistar rats.

Keywords

Diabetes mellitus Hepatoprotective Seabuckthorn Serum enzymes Streptozotocin Wistar rats

References

  1. Ahmed, R. G. (2005). The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system. Medical Journal of Islamic World Academy of Sciences., 15: 31–42.
  2. Alberti, K.G., Zimmet, P. and Shaw, J. (2007). International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabet. Med., 24(5): 451-63.
  3. Al-Musa, H. and Al-Hashem, F. (2014). Hypoglycemic, Hepato-Renal and Antioxidant potential effects of Chamomile recutita flowers ethanolic extract in Streptozotocin-Diabetic rats. Am. J. Pharmacol. Toxicol., 9 (1): 1-12
  4. American Diabetes Association Diagnosis and classification of diabetes mellitus. (2010). J Diabetes Care. 33: S62–9.
  5. Arkkila, P. E., Koskinen, P. J., Kantola, I. M. and Viikari, J. S. (2001). Diabetic complications are associated with liver enzyme activities in people with type 1 diabetes. Diabetes Res. Clin. Pract., 52: 113-118.
  6. Balazs M, and Halmos T. (1895). Electron microscopic study of liver fibrosis associated with diabetes mellitus. J. Exp. Pathol., 27: 153–62.
  7. Barneo, L., Esteban, M.M., GarciaPravia, C., Diaz, F., & Marin, B. (1990). Normalization of    altered liver function tests after islet transplantation in diabetic rats. Diabet. Metab.,    16(4): 284-9.
  8. Basu, M., Prasad, R., Jayamurthy, P., Pal, K., Arumughan, C. and Sawhney, R.C. (2007). Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine., 14: 770-777.
  9. Blicharski, J., Lisiewicz, J. and Moszczynki, P. (1983). ACP in Peripheral Blood Lymphocyte Lysosomes in Patients with Diabetes Mellitus. Histochem. Cytochem, 21: 15-22.
  10. Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91: 179-94.
  11. Bull, H., Murray, P. G., Thomas, D., Frazer, A. M. and Nelson, P. N. (2002). Acid phosphatases. Mol. Pathol., 55: 65–72.
  12. Chalasani, N., Aljadhey, H., Kesterson, J., Murray, M. D. and Hall, S.D. (2004). Patients with elevated liver enzymes are not act high risk for station hepatotoxicity. Gastroenterology., 126: 1287–1292.
  13. Drotman, R. and Lawhorn, G. (1978). Serum enzymes as indicators of chemically induced liver damage. Drug Chem. Toxicol., 1(2): 163-171.
  14. Duncun, D. B. (1955). Multiple range and multiple F-Tests. Biometrics., 11: 1-42.
  15. Elizabeth, H. and Harris, M. D. (2005). Elevated liver function tests in type 2 diabetes. Clin. Diabetes., 23: 115-119.
  16. Eskander, E. F., Won Jun, H., Ibrahim, K. A. and Abdelal, W. E. (1995). Hypoglycemic effect of a herbal formulation in alloxan diabetic rats. Egypt J. Pharm. Sci., 36: 253-270.
  17. Evelson, P., Susemihl, C., Villarreal, I., Llesuy, S., Rodríguez, R., Peredo, H., Lemberg, A., Perazzo, J. and Filinger, E. (2005). Hepatic morphological changes and oxidative stress in chronic streptozotocin-diabetic rats. Ann. Hepatol., 4: 115-20.
  18. Farokhi, F., Farkhad, N. K., Togmechi, A. and Soltani band, K. (2011). Preventive effects of Prangos ferulacea (L.) Lindle on liver damage of diabetic rats induced by alloxan. Avicenna J. Phytomed., 2: 63-71.
  19. Fernandes, A. A. H., Novelli, E. L. B., Junior, A. F. and Galhardi, C. M. (2009). Effect of Naringerin on Biochemical Parameters in the Streptozotocin-Induced Diabetic Rats. Braz. Arch. Biol. Technol., 52: 51-59.
  20. Gallou, G., Ruelland, A., Legras, B., Maugendre, D., Allanic, H., and Cloarec, L. (1993). Plasma MDA in type 1 and type 2 diabetes. Clin. Chim. Acta, 214: 227-234.
  21. Gayathri, M. and Kannabiran, K. (2008). Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian J. Clin. Biochem., 23: 394-400. 
  22. Geetha, S., Jayamurthy, P., Pal, K., Pandey, S., Kumar, R. and Sawhney, R. C. (2008). Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. J. Sci. Food Agric., 88 (9): 1592–1597.
  23. Geetha, S., Sai Ram, M., Singh, V., Ilavazhagan, G. and Sawhney, R. C. (2002). Antioxidant and immunomodulatory properties of seabuckthorn (Hippophaerhamnoides) an in-vitro study. J. Ethnopharmacol., 79: 373.
  24. Geps, W., Gregoire, F., Van Assche, A., and DeGasparo, M. (1970). Quantitative Enzyme Pattern and Insulin Content of Human Islets of Langerhans. In: The Structure and Metabolism of the Pancreatic Islets Falkmer et al.,. Pergamon Press Ltd. 1st Ed., 16: 283-305.
  25. Gittes, R.F. (1983). Serum acid phosphatase and screening for carcinoma of the Prostate. N. Engl. J. Med., 309: 852-853
  26. Gupta, R., Bajpai, K. G., Johri, S. and Saxena, A. M. (2008). An Overview of Indian novel traditional medicinal plants with antidiabetic potentials. Afr. J. Tradit. Complement. Altern. Med., 5: 1-17.
  27. Gupta, R. and Gupta, R. S. (2009). Effect of Pterocarpus marsupium in Streptozotocin-induced Hyperglycemic State in Rats: Comparison with Glibenclamide. Diabetol. Croat., 38(2): 39-45.
  28. Harrison, S. A. and Diehl, A. M. (2002). Fat and the liver – a molecular overview. Semin Gastrointest Dis., 13: 3-16.
  29. Hassan, H. A. (2007). Effects of dietary supplementation with tigernut tubers on streptozotocin-induced diabetic rats. The Egyptian J. Hospital Med., 29: 475-485.
  30. Hsu, C. C., Tsai, W. C., Hsiao, T. Y., Tseng, F. Y., Shau, Y. W., Wang, C. L. and Lin, S. C. (2009). Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin. Biochem., 24: 682-686.
  31. Imaeda, A., Kaneko, T., Aoki, T., Kondo, Y., Nakamura, N., Nagase, H. and Yoshikawa, T. (2002). Antioxidative effects of fluvastatin its metabolites against DNA damage in streptozotocin treated mice. Food Chem. Toxicol., 40: 1415-1422.
  32. Kallio, H., Yang, B. and Pippo, P. (2002). Effects of different origins and harvesting time on vitamin C, tocopherols and tocotrienols in sea buckthorn (Hippophae rhamnoides) berries. J. Agric. Food Chem., 50: 6136-6142.
  33. Kaneto, H., Katakami, N. and Kawamori D. (2007). Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid. Redox Signal., 9: 355-366.
  34. Khajuria, P., Raghuwanshi, P., Rastogi, A., Koul, A.L., Zargar, R., Kour, S. and Mudasir, M. (2016). Ameliorating effect of seabuckthorn leaf extract supplementation on streptozotocin induced diabetes mellitus in Wistar Rats. Journal of Animal Research., 6(5): 787-794.
  35. Kim, J. S., Ju, J. B., Choi, C. W. and Kim, S. C. (2006). Hypoglycemic and antihyperglycemic effect of Four Korean medicinal plants in alloxan induced diabetic Rats. Am. J. Biochem. Biotechnol., 2: 154-160.
  36. Ladeji, O., Omekarh, I. and Solomon, M. (2003). Hypoglycemic properties of aqueous bark extract of Ceiba pentandra in streptozotocin induced diabetic rats. J. Ethnopharmacol.,84: 139-142.
  37. Lilly, G., Yogendra, P., Richa, S., Dev, K., Sudipta, C., Mohinder, K. C., Parul, B., Ravi, K. and Sawhney, R. C. (2005). Anti-inflammatory activity of seabuckthorn (Hippophae rhamnoides L.) leaves. Int. Immunopharmacol., 5: 1675.
  38. Lucchesi, N., Freitas, N. T., Cassettari, L. L., Marques, S. F. and Spadella, C. T. (2013). Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir. Bras., 28(7): 502–508.
  39. Maheshwari, D. T., Yogendra, M. S., Saroj, K., Verma, S. K., Singh, V. K. and Singh, S. N. (2011). Antioxidant and hepatoprotective activities of phenolic rich fractions of sea-buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol., 49: 2422- 2428.
  40. Mansour, H. A., Newairy, A. S., Yousef, M. I. and Sheweita, S. A. (2002). Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology., 170(3): 221-228.
  41. Madrigal-Santillán, E., Madrigal-Bujaidar, E., Álvarez-González, I., Sumaya-Martínez, M.T., Gutiérrez-Salinas, J., Bautista, M., Morales-    González, Á., García-Luna y González-Rubio, M., Aguilar-Faisal, J.L. and Morales-González, J.A. (2014). Review of natural products with hepatoprotective effects. World J. Gastroenterol., 20(40): 14787-804.
  42. McNuff, M. A., Omoruyi, F. O., Morrison, E. Y. and Asemota, H. N. (2003). Hepatic function enzymes and lipid peroxidation in streptozotocininduced diabetic rats fed bitter yam (Dioscorea polygonoides) steroidal sapogenin extract. Diabetol. Croat., 32: 17–23.
  43. Mehana, E. E., Meki, A. R. and Fazili, K. M. (2012). Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Exp. Toxicol. Pathol., 64(4): 291-295.
  44. Nanbara S., Tanaka K., Koide H., Tanaka T. and Hayashi T. (1990). Changes on levels of B6 vitamin and aminotransferase in the liver of diabetic animals. Diabetes Res. Clin. Pract., 9: 109–114.
  45. Niedowicz, D.M. and Daleke, D.L. (2005). The role of oxidative stress in diabetic complications. Cell Biochem. Biophys., 43: 289-330.
  46. Okawa, H. and Doi, K. (1983). Neoplastic lesions in Streptozotocin treated rats. Jikken Dobutsu. 32: 77–84. 
  47. Papaccio, G., Pisanti, F.A., Latronico, M.V., Ammendola, E. and Galdieri, M. (2000). Multiple low dose and single high dose treatments with streptozotocin do not generate nitric oxide. J. Cell Biochem., 77: 82-91. 
  48. Pintea, A., Marpeau, A., Faye, M., Socaciu, C. and Gleizes, M. (2001). Polar lipid and fatty acid distribution in carotenolipoprotein complexes extracted from seabuckthorn fruits. Phytochem. Anal., 12: 293–298.
  49. Pratt, D.S. and Kaplan, M.M. (2009). Evaluation of abnormal liver enzyme results in asymptomatic patients. N. Engl. J. Med., 342: 1266-1271. Ramesh, B., & Pugalendi, K.V. (2006). Impact of umbelliferone (7-hydroxycourmarin) on hepatic marker enzymes in Streptozotocin diabetic rats. Indian J. Pharmacol., 38: 209-10. 
  50. Rawi, S.M., Abdel Moneim, A. and Ahmed, O.M. (1998). Studies on the effect of garlic and glibenclamide on alloxan-diabetic rats. 2: Biochemical effects. Egypt J. Zool., 30: 211-228. 
  51. Rawi, S.M., Mourad, I.M. and Sayed, D.A. (2011). Biochemical changes in experimental diabetes before and after treatment with    Mangifera indica and Psidium guava extracts. J. Pharm. Biomed. Sci., 2: 29-41.
  52. Rosenblit, P.D., Metzger, R.P. and Wick, A.N. (1974). Effect of Streptozotocin diabetes on Alkaline phosphatase and selected glycosidase activities of serum and various rat organs. Exp. Biol. Med. (Maywood), 145: 244.
  53. Saggu, S., Divekar, H.M., Gupta, V., Sawhney, R.C., Banerjee, P.K. and Kumar, R. (2007). Adaptogenic and safety evaluation of Seabuckthorn (Hippophae rhamnoides) leaf extract: A dose dependent study. Food Chem. Toxicol., 45: 609-617. 
  54. Sawant, P.L., Shibko, S., Kumta, U.S. and Tappel, A.L. (1964). Isolation of rat liver lysosomes and their general properties. Biochim. Biophys. Acta., 85: 82.
  55. Singh S.N., Vats P., Suri S., Shyam R., Kumria M.M.L., Ranganathan S. and Sridharan K. (2001). Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol., 76: 269-277.
  56. Snedecor, G.W. and Cochran, W.G. (1994). Statistical Methods. 8th edn. The Iowa State University, Iowa (USA). 
  57. Suryakumar, G. and Gupta, A. (2011). Medicinal and therapeutic potential of Seabuckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol.,    138: 268-278.
  58. Tanaka, K., Nanbara, S., Tanaka, T., Koide, H. and Hayshi, T. (1988). Aminotransferase activity in the liver of diabetic mice. Diabetes Res. Clin. Pract., 5: 71-75. 
  59. Tolman, K.G., Fonseca, V., Tan, M.H. and Dalpiaz, A. (2004). Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann. Intern. Med., 141: 946–56.
  60. Ullah, A., Khan, A. and Khan, I. (2016). Diabetes mellitus and oxidative stress––A concise review. Saudi Pharm J., 24: 547–553.
  61. Unakami, S., Komada, T. and Sakagishi, Y. (1990). Translocation of intestinal alkaline phosphatase in streptozotocin-induced diabetic rats. Int. J. Biochemistry., 22 (11): 1325-1330.
  62. Whitehead, M.W., Hawkes, N.D., Hainsworth, I. and Kingham, J.G.C. (1999). A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut. 45: 129-133.
  63. Worobetz, L., Hilsden, R., Shaffer, E., Simon, J., Pare, P. and Scully, L. (2003). In: First Principles of Gastroenterology. Thomson BR, Shaffer EA, editors. 
  64. Yu, W.H., Chia, F.T., Wen, K.C. and Fung, J.L. (2009). Protective effects of seabuckthorn (Hippophae rhamnoides L.) seed oil against carbon tetrachloride-induced hepatotoxicity in mice. Food Chem. Toxicol., 47: 2281–2288.
  65. Zhang, W., Zhao, J., Wang, J., Pang, X., Zhuang, X., Zhu, X. and Qu, W. (2010). Hypoglycemic effect of aqueous extract of seabuckthorn (Hippophae rhamnoides L.) seed residues in streptozotocin induced diabetic rats. Phytother. Res., 24: 228-232. 

Global Footprints