Cloning, characterization and identification of polymorphism in TCR Zeta Gene in deoni cattle

DOI: 10.18805/ijar.B-3389    | Article Id: B-3389 | Page : 1537-1542
Citation :- Cloning, characterization and identification of polymorphism in TCR Zeta Gene in deoni cattle.Indian Journal Of Animal Research.2018.(52):1537-1542
K. Swathi, M. Gnana Prakash, D. Sakaram, T. Raghunandan, A. Sarat Chandra and P. Kalyani swathi.koppula014@gmail.com
Address : Department of Animal Genetics and Breeding, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Hyderabad- 500 030, Telangana, India.
Submitted Date : 16-02-2017
Accepted Date : 10-01-2018

Abstract

The cDNA encoding, T-cell receptor zeta (TCR z; CD247) molecule of Deoni cattle (Bos indicus), was isolated, cloned and sequenced in the present study. The CD247 cDNA comprised 1078 nucleotides including a 30 nucleotide 5¹-untranslated region (UTR), 495 nucleotide single open reading frame (ORF) and 553 nucleotide 3¹-UTR. Deduced amino acid of cattle CD247 sequence was two residues shorter than the corresponding sheep sequences. However, ruminant-specific insertions and substitutions in transmembrane (TM) and intra-cytoplasmic (IC) domain were present in cattle. Immunoreceptor tyrosine-based activation motifs (ITAMs), the important motifs for TCR signalling, were totally conserved among ruminants including cattle. The 3¹ - UTR region of the cattle CD247 was highly homologous to the corresponding region in the buffalo sequence and showed lack of polymorphism after polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis using Hae III and Mse I restriction enzymes in cattle population. Phylogenetically, cattle sequence was closer to buffalo sequence under the ruminant’s lineage. The conserved nature of this gene ensures TCR integrity which is vital for induction of optimal and efficient immune response.

Keywords

Cattle CD247 Immunoreceptor tyrosine-based activation motif (ITAM) Phylogeny T cell receptor zeta.

References

  1. Agaba, M., Kemp, S. J., Barendse, W. and Teale, A. (1997). Genetic mapping of bovine T-cell receptor complex loci. Anim. Genet. 28: 235-237.
  2. Amarante, M. R. V., Ansari, H. A., Maher, D. W., Pearce, P. D. and Broad, T. E. (1996). Localization of the antigen CD3, zeta polypeptide (CD3Z) to cattle chromosome 3qll-ql4. Mamm Genome. 7:397-398.
  3. Baniyash, M., Hsu, V. W., Seldin, M. F. and Klausner, R. D. (1989). The isolation and characterization of the murine T-cell antigen receptor zeta chain gene. J. Biol. Chem. 264 (22): 13252-13257.
  4. Chowdhury, B., Tsokos, C. G., Krishnan, S., Robertson, J., Fisher, C. U., Warke, R. G., Warke, V. G., Nambiar, M. P. and Tsokos, G. C. (2005). Decreased stability and translation of T cell zeta mRNA with an alternatively spliced 3' untranslated region contribute to zeta chain down regulation in patients with systemic lupus erythematosus. J. Biol. chem. 280(19):18959-18966.
  5. Gorman, C. L., Russell, A. I., Zhang, Z., Graham, D. C., Cope, A. P. and Vyse, T. J. (2008). Polymorphisms in the CD3Z gene influence TCRz expression in systemic lupus erythematosus patients and healthy controls. J. Immunol.180: 1060-1070.
  6. Hagens, G., Galley, Y., Glaser, I., Davis, W. C., Baldwin, C. L., Clevers, H. and Dobbelaere, D. A. E. (1996). Cloning, sequencing and expression of the bovine CD3 epsilon and TCR-zeta chains, two invariant components of the T-cell receptor complex. Gene 169(2): 165-171.
  7. Johansson, B., Palmer, E. and Bolliger, L. (1999). The extracellular domain of the TCR zeta chain is essential for TCR function. J. Immunol. 162: 878-885.
  8. Kersh, E. N., Shaw, A. S. and Allen, P. M. (1998). Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science, 281: 572-575.
  9. Klausner, R. D., Weissman, A. M., Baniyash, M., Bonifacino, J. S. and Samelson, L. E. (1989). The role of zeta chain in the expression, structure and function of the T cell receptor. Adv. Exp. Med. Biol. 254: 21-24.
  10. Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7): 1870-1874.
  11. Mingarro, I., Elofsson, A. and Von Heijne, G. (1997). Helix-helix packing in a membrane like environment. J. Mol. Biol. 263: 525.
  12. Modi, W. S., Weissman, A. M., Seuanez, H., Klausner, R. D. and O’Brien, S. J. (1989). Chromosomal localisation of the T-cell receptor zeta chain. Cytogenet. Cell. Genet. 51: 1047
  13. Nambiar, M. P., Enyedy, E. J., Warke, V. G., Krishnan, S., Dennis, G., Kammer, G. M. and Tsokos, G. C. (2001). Polymorphisms/    mutations of TCR-zeta chain promoter and 3' untranslated region and selective expression of TCR-zeta chain with an alternatively spliced 3' untranslated region in patients with systemic lupus erythematosus. J. Auto immun. 16(2): 133-142.
  14. Naskar, S., Deb, S. M., Kumar, S., Niranjan, S. K., Sharma, D., Sakaram, D.and Sharma, A. (2014). Molecular characterisation of T cell receptor-zeta subunit (CD247) gene in buffalo (Bubalusbubalis) J. Appld. Anim. Res. 42(1): 38-43.
  15. Sancho, J., Peter, M. E., Franco, R., Danielian, S., Kang, J. S., Fagard, R., Woods, J., Reed, J. C., Kamoun, M. and Terhorst, C. (1993). Coupling of GTP-binding to the T cell receptor-zeta chain with TCR mediated signal transduction. J. Immunol., 150: 3230-3242.
  16. Sambrook, J. and Russel, D. W. (2001). Molecular Cloning. A Laboratory Manual. 3rd Edition. Cold Spring Harbor Laboratory Press. New York.
  17. Schaefer, T. M., Bell, I., Fallert, B. A. and Reinhart, T. A. (2000). The T cell receptor æ chain contains two homologous domains with which simian immunodeficiency virus Nef interacts and mediates down-modulation. J. Virol. 74(7): 3273-3283.
  18. Seldin, M. F, Kingsmore, S. F, Moseley, W. S. (1989). Analyses of genetic linkage relationship in the mouse using an interspecific cross: comparative mapping of genes localised to human chromosome 1. Cytogenet Cell Genet.51:1077.
  19. Sussman, J. J., Bonifacino, J. S., Lippincott-Schwartz, J., Weissman, A. M., Saito, T., Klausner, R. D. and Ashwell, J. D. (1988). Failure to synthesize the T cell CD3z chain: structure and function of a partial T cell receptor complex. Cell 52: 85-95.
  20. Takeuchi, T., Tsuzaka, K., Pang, M., Amano, K., Koide, J. and Abe, T. (1998). TCR æ chain lacking exon 7 in two patients with systemic lupus erythematosus. Int. Immunol. 10: 911-921.
  21. Torres, J., Briggs, J. A. G. and Arkin, I. T. (2002). Convergence of experimental, computational and evolutionary approaches predicts the presence of a tetrameric form of CD3-z. J Mol Biol. 316:375-384.
  22. Tsuzaka, K., Setoyama, Y., Yoshimoto, K., Shiraishi, K., Suzuki, K., Abe, T. and Takeuchi, T. (2005). A splice variant of TCR Zeta mRNA lacking exon 7 leads to the downregulation of TCR Zeta, the TCR/CD3 complex and IL-2 production in systemic lupus erythematosus T cells. J. Immunol. 174(6): 3518-3525.
  23. Tsuzaka, K., Setoyama, Y., Yoshimoto, K., Shiraishi, K., Suzuki, K., Abe, T. and Takeuchi, T. (2005). A splice variant of TCR Zeta mRNA lacking exon 7 leads to the downregulation of TCR Zeta, the TCR/CD3 complex and IL-2 production in systemic lupus erythematosus T cells. J. Immunol. 174(6): 3518-3525.
  24. Weiss, A. (1991). Molecular and genetic insights into T cell antigen receptor: structure and functions. Annu. Rev. Genet. 25: 487-510.
  25. Weissman, A. M., Frank, S. J., Orloff, D., Mercep, M., Ashwell, J.D. and Klausner, R. D. (1989). Role of the zeta chain in the expression of T cell antigen receptor: genetic reconstitution studies. EMBO J. 8: 3651-3656. 

Global Footprints