Molecular characterization of lingual antimicrobial peptide gene of local cattle (Bos indicus) of Assam and insilco designing of antimicrobial peptides

DOI: 10.18805/ijar.B-3299    | Article Id: B-3299 | Page : 1569-1572
Citation :- Molecular characterization of lingual antimicrobial peptide gene of local cattle(Bos indicus) of Assam and insilco designing of antimicrobial peptides.Indian Journal Of Animal Research.2018.(52):1569-1572
D.J. Kalita, S. Sarma and A. Baruah djkalita@rediffmail.com
Address : Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Guwahati, Khanapara-781 022, Assam, India.
Submitted Date : 2-09-2016
Accepted Date : 15-05-2018

Abstract

Mammalian defensin is the one of the important antimicrobial peptides expressed by different epithelial lining of the living organisms. Present study was undertaken to characterize the lingual antimicrobial peptide (LAP) gene of Assam local cattle (Bos indicus ) for insilco designing  of peptide for synthesis of novel antimicrobial agents. RNA was isolated from the tongue epithelial of Bos indicus and reverse transcribed with specific primer. The amplified PCR product was purified, cloned and sequenced. The size of the PCR product was 230 bp and cloned cDNA after sequencing revealed the open reading frame (ORF) of 195 bases. The total number of predicted amino acid in the peptide was 64. Aligned amino acid sequences of Bos indicus LAP showed six conserved cysteine residues at different positions. The mature peptide of local cattle LAP had six (6) arginine, three (3) lysine, three (3) proline and one (1) histidin residues. Support vector machine algorithms showed the antimicrobial potency of different segments of the mature peptide and out of them four different most potent peptides were designed.  From the present study, it can be concluded that the mature domain of the Bos indicus lingual antimicrobial peptide (LAP) may be use as template for synthesis of new antimicrobial agents.

Keywords

Antimicrobial peptide Defensin Local cattle Open reading frame.

References

  1. Boniotto, M., Antcheva, N., Zelezetsky, I, Toss, A., and Crovella, S. (2003). A study of host defense peptide b-defensin 3 in primates. Biochem. J. 374: 707-714. 
  2. Daher, K.A., Lehrer, R.I., Ganz, T. and Kronenberg, M. (1998). Isolation and characterization of human defensin cDNA clones. Proc. Natl. Acad. Sci., USA. 85: 7327-7331.
  3. Das, D., Sharma, B. C., Mitra, A and Kumar A. (2005). Molecular cloning and characterization of b-defensin cDNA expressed in distal ileum of buffalo (Bubalus bubalis) DNA Seq. 16:16-20.
  4. Diamond, G., Zasloff, M., Eck, H., Brosseur, M., Maloy, W.L. and Bevins, C.L. (1991). Tracheal antimicrobial peptide; a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci., USA. 88: 3952-3956.
  5. Ganz, T. (2003). The role of antimicrobial peptides in innate immunity. Inter. Comp. Biol. 43: 300-304.
  6. Huttner, K.M., Lambeth, M.R., Burkin, H.R., Burkin, D.J. and Broad, T.E. (1998). Localization and genomic organization of sheep antimicrobial peptides genes. Gene. 206: 85-91. 
  7. Lehrer , R. , Ganz , T. and Selested , M. ( 1991). Defensins : endogenous antibiotic peptides of animal cells. Cell. 64: 229-230. 
  8. Liu, D. and Degrado, F. (2001). De novo design and characterization of antimicrobial b-peptides. J. Am. Chem. Soc. 123:7553-7559.
  9. Nannette, Y. Y., Jun, Y., Alan, T.and Selested, E. (1999). Cloning and expression of bovine neutrophil ß-defensins. J. Bio. Chem.274: 26249-26258. 
  10. Robert, E. W., Hancock, P. and Monisha, G. S. (2000). The role of antimicrobial peptides in animal defences. Proc. Natl. Acad. Sci., USA. 97: 8856-8861.
  11. Ryan, L.K., Rhodes, J., Bhat, M. and Diamond, G. (1998). Expression of b-defensin genes in bovine alveolar macrophages. Infect. Immun. 66: 878-881.
  12. Schonwetter, B.S., Stolzenberg, E.B. and Zasloff, M.A. (1995). Epithelial antibiotic induced at sites of inflammation. Science, 262: 1645-1648.
  13. Saranya C. 1. Pavla, S.I. and Istvan T. (2013). Chemical methods for peptide and protein production. Molecules : 4373-4388. 
  14. Selested M. E. and Ouellette, A. J. (1995). Defensin in granules of phagocytic and non-phagocytic cells. Trends Cell. Biol. 5: 114-119.
  15. Tarver, A.P., Clark, D.P., Diamond, G., Rusell, J.P., Erdjument-Bromage, H., Tempst, P., Cohen, K.S., Jones, D.E., Sweeney, R.W., Mary, W., Hwang, H. and Bevins, C.L. (1998). Enteric b-defensin: Molecular cloning and characterization of a gene with induced intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect. Immun. 66: 1045-1056. 
  16. Tew, N. G., Liu, D., Chen, B. and Degrado, W. F. (2002). De novo design of biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci., USA. 99: 5110-5114. 
  17. Thomas Shaini , Karnik Shreyas , Barai Ram Shankar , Jayaraman V. K. and Thomas Susan Idicula (2010). CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res., 38: 774–780.
  18. Xiao, Y., Dai, Y., Bommineni, Y. R., Soulages, J. L., Gong, X., Gong, Y., Prakash, O. and Zhang. G. (2006). Structure-activity relationships of fowlicidin-1, a cathelicidin antimicrobial peptide in chicken. FEBS J. 273: 2581-2583.
  19. Zhao, C., Nguyen, T., Liu, L., Shanova, O., Brogden, K. and Lehrer, R.I. (1999). Differential expression of caprine b-defensins in digestive and respiratory tissues. Infect. Immun. 67 : 6221-6224. 

Global Footprints