Polymorphisms in Hsp90ab1 gene and their association with heat tolerance in Sahiwal and Karan Fries cows

DOI: 10.18805/ijar.v0iOF.6662    | Article Id: B-3034 | Page : 856-861
Citation :- Polymorphisms in Hsp90ab1 gene and their association with heattolerance in Sahiwal and Karan Fries cows .Indian Journal Of Animal Research.2016.(50):856-861

Lalrengpuii Sailo1, I.D. Gupta*, Archana Verma, Ramendra Das2, M.V. Chaudhari1 and Sohanvir  Singh2

idgupta1959@gmail.com
Address :

ICAR-National Dairy Research Institure, Karnal-132 001, India.

Submitted Date : 3-06-2015
Accepted Date : 15-01-2016

Abstract

Heat shock protein functions as a molecular chaperone and plays an important role in thermotolerance. The study was undertaken to identify single nucleotide polymorphisms (SNPs) of Hsp90ab1 gene by comparative sequencing and to analyze their association with thermo-physiological parameters, viz. respiration rate (RR), rectal temperature (RT) and heat tolerance coefficient  (HTC) in different seasons, viz. winter, spring and summer, at probable extreme hours of the day in Sahiwal and Karan Fries cows. The RR, RT and HTC in summers were significantly (P£0.01) higher than the other two seasons. Polymorphism of Hsp90ab1 gene, evaluated by comparative sequencing revealed six SNPs, viz. T17871421C, C17871485del, C17872061T, T17872112C, T17872148G and A17872199C, two each located in exon 8, intron 10 and exon 11. SNP loci T17871421C and C17871485del were found to be monomorphic for allele C and Deletion (-) respectively in experimental population. Individuals with AA genotype showed significantly (P £0.01) lower RR than AC genotype. While, individuals with CT genotype recorded significantly (P £ 0.01) lower RT than CC genotype. Therefore, it is inferred that propagation of AA and CT genotypes may be an aid to selection and breeding programmes to enhance thermo-tolerance in dairy cattle.

Keywords

Heat stress Hsp90ab1 Karan Fries SNP Sahiwal.

References

  1. Beatty, D. T., Barnes, A., Taylor, E., Pethick, D., McCarthy, M. and Maloney, S. K. (2006). Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 84 : 972–985. 
  2. Benezra, M.V. (1954). A new index for measuring the adaptability of cattle to tropical condition. Proc of J. Anim. Sci. 13: 1915
  3. Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B. and Nardone A., (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. J. Anim. Sci. 4:1167–1183.
  4. Charoensook, R., Gatphayak, K., Sharifi, A.R., Chaisongkram, C., Brenig, B. and Knorr, C. (2012). Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Trop Anim Health Prod. 44: 921–928.
  5. Chen, B., Zhong, D. and Monteiro, A. (2006). Comparative genomics and evolution of the Hsp90 family of genes across all kingdoms of organisms. BMC Genomics. 7: 156-167.
  6. Chen, Z., Gan, J., Xiao, X., Jiang, L., Zhang, X., Luo, Q. (2013). The association of SNPs in Hsp90b gene 50 flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Mol Biol Reports. 40: 5295e306.
  7. Collier, R. J., Collier, J. L., Rhoads, R. P. and Baumgard, L. H. (2008). Genes Involved in the Bovine Heat Stress Response. J. Dairy Sci. 91:445–454.
  8. Craven, R. A., Egerton, M., Stirling, C. J. (1996). A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J. 15: 2640–2650.
  9. Deb, R., Sajjanar, B., Singh, U., Kumar, S., Singh, R., Sengar, G., Sharma, A. (2013). Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus x Bos taurus) breed of cattle: a comparative study. Gene, 536 : 435-440.
  10. Ganaie, A. H., Ghasura, R. S., Mir, N. A., Bumla, N. A., Sankar, G. and Wani, S. A. (2013). Biochemical and physiological changes during thermal stress in bovines: A Review. Iran J. of Applied Anim Sci. 3: 423-430.
  11. Gaughan, J. B., Mader, T. L., Holt, S. M., Sullivan, M. L. and Hahn, G. L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. Int. J. Biometeorol. 54: 617–627.
  12. Hansen, P. J. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 82–83:349–360.
  13. Hoffmann, I. (2010). Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genetics, 41 (Suppl. 1): 32–46
  14. Koga, A., Kuhara, T. and Kanai, Y. (2004). Comparison of body water retention during water deprivation between swamp buffaloes and Fresian cattle. J. Agric. Sci. 138: 435-440.
  15. Kregel, K. C. (2002). Molecular biology of thermoregulation Invited review: Heat shock Proteins: modifying factor in physiological stress responses and acquired thermotolerance. J Appl. Physiol. 92: 2177-2186.
  16. Liu, Y. X., Zhou, X., Li, D. Q., Cui, Q. W., Wang, G. L. (2010). Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genetics and Molecular Research, 9: 891–896.
  17. Liu, Y., Li, D., Li, H., Zhou, X., Wang, G. (2011). A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Report. 38:83–88.
  18. Mayengbam, P. (2008). Heat shock protein 72 expression in relation to thermo tolerance of Sahiwal and Holstein-Friesian crossbred cattle. Ph.D. Thesis submitted to NDRI Deemed University, Karnal (Haryana), India.
  19. McManus, C. M., Louvandini, H., Paim, T. P., Silva, F. C. P., Bernal, F. E. M. (2014). Factors affecting heat tolerance in crossbred cattle in central Brazil. Ciencia Animal Brasileria, 15:152-158. 
  20. NRC. (1971). National Research Council, (1971) A Guide to Environmental Research on Animals. National Academy of Science, Washington, DC, USA.
  21. Rako, L, Blacket, M. J., Mckechnie, S. W., Hoffmann, A. A. (2007). Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Mol Ecol 16: 2948-57.
  22. Reid, C. R., Bailey, C. M., Judkins, M. B. (1991). Metabolizable energy for maintenance of beef-type Bos taurus and Bos indicus x Bos taurus cows in a dry, temperate climate. J. Anim. Sci. 69: 2779–2786.
  23. Richter, K., Buchner, J. (2001). Hsp90: chaperoning signal transduction. J Cell Physiol, 188:281-90.
  24. Sajjanar, B., Deb, R., Singh, U., Kumar, S., Brahmane, M., Nirmale, A., Bal, S. K., Minhas, P. S. (2015). Identification of SNP in HSP90AB1 and its association with relative thermo-tolerance and milk production traits in Indian dairy cattle, Anim Biotechnol. 26: 921-928.
  25. Sambrook, J., Russell, D.W. (1989). Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  26. Singh, S. V. and Upadhyay, R. C. (2009). Thermal stress on physiological functions, thermal balance and milk production in Karan Fries and Sahiwal cows. Indian vet. J. 86: 141-144.
  27. Song, L., Wu, L., Ni, D., Chang, Y., Xu, W., Xing, K. (2006). The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish Shellfish Immunol 21: 335-45.
  28. Vijay K. (2005). Effect of thermal stress management on nutritional, physiological and behavioural responses of buffalo heifers. Ph D Thesis. Deemed Univ. Indian Vet. Res. Inst., Izatnagar, India.
  29. Yang, C., Zhang, L., Wang, L., Zhang, H., Qiu, L., Siva, V. S. (2011). The Gln32Lys polymorphism in HSP22 of Zhikong scallop Chlamys farreri is associated with heat tolerance. PLoS One. 6: 285-64.
  30. Yatoo, M. I., Kumar, P., Dimri, U. and Sharma. M. C. (2012). Effects of Climate Change on Animal Health and Diseases. Int. J. Livest. Res. 2: 15-24.
  31. Yeh, F. C., Yang, R. C. and Boyle, T. (1999). POPGENE VERSION 1.31: Microsoft Window-based free Software for Population Genetic Analysis, 1999, ftp://ftp.microsoft.com/Softlib/HPGL.EXE. 
  32. You, L., Ning, X., Liu, F., Zhao, J., Wang, Q., Wu, H. (2013). The response profiles of HSPA12A and TCTP from Mytilus galloprovincialis to pathogen and cadmium challenge. Fish Shellfish Immunol 35:343-50.
     

Global Footprints