Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 55 issue 10 (october 2021) : 1240-1245

Antimicrobial Susceptibility and Detection of Genes for Antimicrobial Resistance of Mycoplasma bovis, Staphylococcus aureus and Escherichia coli

A. Aksoy
1Merkez Mahallesi Recep Bozdağ Caddesi 68800, Eskil/Aksaray, Turkey. 
Cite article:- Aksoy A. (2021). Antimicrobial Susceptibility and Detection of Genes for Antimicrobial Resistance of Mycoplasma bovis, Staphylococcus aureus and Escherichia coli. Indian Journal of Animal Research. 55(10): 1240-1245. doi: 10.18805/IJAR.B-1343.
Background: Mycoplasma bovis (Gram-positive bacteria) belongs the class Mollicutes and to the family Mycoplasmataceae (Maunsell and Donovan, 2009). It is a cell wall-less bacterium and are instead enveloped by a complex plasma membrane. In cattle, M. bovis is widely known causes various diseases, such respiratory disease, mastitis, arthritis and otitis.
Methods: The present study was aimed to determine the antimicrobial susceptibility and identify the genes for antimicrobial resistance of Mycoplasma bovis PG45, Staphylococcus aureus and Escherichia coli. M. bovis PG45, S. aureus and E.coli were subjected to test for their sensitivity to various clinically important antibiotics (Cefotaxime, Cefuroxime, Cefaclor Cefalexin, Ofloxacin, Norfloxacin, Nalidixic acid, Amikacin, Ampicillin, Oxacilin, Amoxyclav, Rifampicin, Penicillin G and Tylosin). The minimal inhibitory concentration (MIC) of each antimicrobial agent was determined by applying an agar dilution method. Polymerase Chain reaction (PCR) was used to amplify specific DNA fragments and thus to determine the presence or absence of a target gene (VspA, tet k and tetA). 
Result: Showed the MIC values and the presence of VspA, tetK and tetA in M. bovis PG45, S. aureus and E. coli respectively.
  1. Alsanie, W.F., Felemban, E.M., Farid, M.A., Hassan, M.M., Sabry, A. and Gaber, A. (2018). Molecular identification and phylogenetic analysis of multidrug-resistant bacteria using 16S rDNA sequencing. Journal of Pure and Applied Microbiology. 12(2): 489-496.þ
  2. Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H. and Salamat, M.K.F. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance. 11: 1645-1658.
  3. Boothe, D. (1998): The Marck Veterinary Manual. In: Antibacterial Agents. [Asiello S (eds.)]. Merck and Co, Inc, Philadelphia. 1745-1788.
  4. Bürki, S., Frey, J. and Pilo, P. (2015). Virulence, persistence and dissemination of Mycoplasma bovis. Veterinary microbiology. 179(1-2): 15-22.
  5. Barua, A.G., Raj, H., Kumar, A., Barua, C.C., Purkayastha, A. and Patowary, P. (2017). Diagnosis of Mycobacterium bovis infection in livestock using gamma interferon assay and single intradermal comparative tuberculin test in Assam and Meghalaya. Indian Journal of Animal Research. 51(4): 737-741.
  6. Bhaladhare, A., Sharma, D., Chauhan, A., Kumar, A., Sonwane, A., Singh, R.V., Kumar, P., Kumar, S., Bhushan, B. (2018). Association study of Single Nucleotide Polymorphisms (SNP) in Toll-like Receptor 9 gene with bovine tuberculosis.Indian Journal of Animal Research. 52(4): 533-537.
  7. Caswell, J.L., Bateman, K. G., Cai, H.Y. and Castillo-Alcala, F. (2010). Mycoplasma bovis in respiratory disease of feedlot cattle. Veterinary Clinics: Food Animal Practice. 26(2): 365-379.
  8. Cho, S., Nguyen, H.A.T., McDonald, J.M., Woodley, T.A., Hiott, L. M., Barrett, J.B., Jackson, C.R., Frye, J.G. (2019). Genetic characterization of antimicrobial-resistant Escherichia coli isolated from a mixed-use watershed in northeast Georgia, USA. International Journal of Environmental Research and Public Health. 16(19): 3761.
  9. Droesse, M., G. Tangen, I. Gummelt, H. Kirchhoff, L.R. Washburn and R. Rosengarten. 1995. Major membrane proteins and lipoproteins as highly variable immunogenic surface components and strain-specific antigenic markers of Mycoplasma arthritidis. Microbiology. 141: 3207-3219.
  10. Dudek, K., Nicholas, R.A., Szacawa, E. and Bednarek, D. (2020). Mycoplasma bovis Infections-Occurrence, Diagnosis and Control. Pathogens. 9(8): 640.
  11. Gautier Bouchardon, A.V. (2018). Antimicrobial resistance in Mycoplasma spp. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. 425-446.
  12. Goswami, P., Banga, H.S. and Mahajan, V. (2019). Pathological description of naturally occurring Mycoplasma bovis associated pneumonia in bovine calves. Indian Journal of Animal Research. 53(6): 799-806.
  13. Kolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić1, B., Knežević-Vukčević, J., Vuković-Gačić, B. (2016). Optimisation of the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Botanica Serbica. 40(1): 29-36.
  14. Lysnyansky, I., Sachse, K., Rosenbusch, R., Levisohn, S. and Yogev, D. (1999). The vsp locus of Mycoplasma bovis: gene organization and structural features. Journal of Bacteriology. 181(18): 5734-5741.
  15. Lysnyansky, I., and Ayling, R.D. (2016). Mycoplasma bovis: mechanisms of resistance and trends in antimicrobial susceptibility. Frontiers in Microbiology. 7: 595.
  16. Maunsell, F.P., and Donovan, G.A. (2009). Mycoplasma bovis infections in young calves. Veterinary Clinics of North America: Food Animal Practice. 25(1): 139-177.
  17. Malmberg, J. L., O’Toole, D., Creekmore, T., Peckham, E., Killion, H., Vance, M., Ashley, R., Johnson, M., Anderson, C., Vasquez, M.,Sandidge, D., Mildenberger, J., Hull, N., Bradway, D., Cornish, T., Register K.B., Sandidge, D. (2020). Mycoplasma bovis Infections in Free-Ranging Pronghorn, Wyoming, USA. Emerging infectious diseases. 26(12): 2807. 
  18. Ninet, B., Monod, M., Emler, S., Pawlowski, J., Metral, C., Rohner, P., Auckenthaler, R., Hirschel, B. (1996). Two different 16S rRNA genes in a mycobacterial strain. Journal of Clinical Microbiology. 34(10): 2531-2536.
  19. Siugzdaite, J., Gabinaitiene, A. and Kerziene, S. (2012). Susceptibility of Mycoplasma bovis field isolates to antimicrobial agents. Veterinarni Medicina. 57(11):
  20. Szacawa E., Horecka A., Bednarek D., Niemczuk K. (2014). Antibiotic resistance and the mechanisms of its development in the case of Mycoplasma bovis infection in cattle. Medycyna Weterynaryjna, 70(07).
  21. Sahar, E.O., Metwally, A.M., Al-Saud, N.B.S. and Ibrahim, M.M.M. (2013). Molecular typing of different isolates of Mycoplasma bovis. In Proceedings of the 6th Scientific Conference of Animal Wealth Research in the Middle East and North Africa, Hurghada, Egypt, 27-30 September 2013 (pp. 277-290). Massive Conferences and Trade Fairs.
  22. Sun, P., Luo, H., Zhang, X., Xu, J., Guo, Y. and He, S. (2018). Whole-genome sequence of Mycoplasma bovis strain Ningxia-1. Genome Announcements. 6: e01367-17.
  23. Ullah, F., Malik, S.A., Ahmed, J., Shah, S.M., Ayaz, M., Hussain, S. and Khatoon, L. (2012). Investigation of the genetic basis of tetracycline resistance in Staphylococcus aureus from Pakistan. Tropical Journal of Pharmaceutical Research. 11(6): 925-931

Editorial Board

View all (0)