Norfloxacin Sub-Inhibitory Concentration Affects Streptococcus suis Biofilm Formation and Virulence Gene Expression

DOI: 10.18805/ijar.B-1192    | Article Id: B-1192 | Page : 342-348
Citation :- Norfloxacin Sub-Inhibitory Concentration Affects Streptococcus suis Biofilm Formation and Virulence Gene Expression.Indian Journal Of Animal Research.2020.(54):342-348
Baobao Li, Li. Yi, Jinpeng Li, Shenglong Gong, Xiao Dong, Chen Wang, Yang Wang  wangyocean@163.com
Address : College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
Submitted Date : 16-08-2019
Accepted Date : 10-12-2019

Abstract

Streptococcus suis (S. suis) is a major pathogen causing economic losses to the swine industry. Norfloxacins are usually used at sub-MIC (Minimum Inhibitory Concentration) doses to prevent S. suis infection. This study demonstrates the effect of norfloxacin sub-MIC on biofilm formation and virulence gene expression in S. suis.It was found that 1/4 MIC of norfloxacin increased biofilm formation in S. suis, the biofilms formed contained a higher number of viable bacteria. Additionally, bacterial growth rates were inhibited at 1/2 MIC of norfloxacin. Furthermore, the mRNA level of S. suis virulence gene cps, ef, sly, fpbs, gdh and gapdh increased by real-time PCR, while the virulence gene mrp decreased at 1/4 MIC. In conclusion, Norfloxacin sub-MICs affects biofilm formation and virulence gene expression in S. suis. These findings suggest that investigating the effect of the administration of antibiotics sub-MICs on bacterial biofilms and infection may lead to the development of future antibiotic treatments modalities.

Keywords

Antibiotics Biofilm Streptococcus suis Sub-inhibitory concentration Virulence gene

References

  1. Adamowicz E.M., Flynn J., Hunter R.C., Harcombe W.R. (2018). Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 12: 2723-2735.
  2. Ahmed N.A., Petersen F.C., Scheie A.A. (2009). AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrobial Agents and Chemotherapy. 53: 4258-4263.
  3. Andersson D.I., Hughes D. (2014). Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 12: 465-478.
  4. Bruchmann J., Kirchen S., Schwartz T. (2013). Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res Int. 20: 3539-3549.
  5. Chan C.L., Richter K., Wormald P.J., Psaltis A.J., Vreugde S. (2017). Alloiococcus otitidis forms multispecies biofilm with haemophilus influenzae: Effects on antibiotic susceptibility and growth in adverse conditions. Front Cell Infect Microbiol. 7: 344-353.
  6. CLSI (2015). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement.
  7. Devi M., Dutta J. B., Rajkhowa S., Kalita D., Saikia G. K., Das B. C., Hazarika R.A., Mahato G. (2017). Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India. Vet World. 10: 556-561.
  8. Hathroubi S., Fontaine-Gosselin S. E., Tremblay Y. D., Labrie J., Jacques M. (2015) Sub-inhibitory concentrations of penicillin G induce biofilm formation by field isolates of Actinobacillus pleuropneumoniae. Vet Microbiol. 179: 277-286.
  9. Hernandez-Garcia J., Wang J., Restif O., Holmes M. A., Mather A. E., Weinert L. A., Wileman T. M., et al. (2017). Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Vet Microbiol. 207: 117-124.
  10. Huang K., Zhang Q., Song Y., Zhang Z., Zhang A., Xiao J., Jin M. (2016). Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother. 60: 6390-6392.
  11. Jones C., Allsopp L., Horlick J., Kulasekara H., Filloux A. (2013). Subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system. PLoS One. 8: e81132.
  12. Krcmery V. (2011). Are subinhibitory concentrations of antibiotics the only culprit of antibiotic resistance? Future Microbiol. 6: 1391-1394.
  13. Olson M.E., Ceri H., Morck D.W., Buret A.G., Read R.R. (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 66: 86-92.
  14. Olwal C.O., Ang’ienda P.O., Onyango D.M., Ochiel D.O. (2018). Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure. BMC Microbiol. 18: 40-53.
  15. Pandey, P.K., Laxmi, M.S. and Kumar, S. (2014). In vitro evaluation of natural and synthetic substrate for biofilm formation and their effect on water qualities. Indian Journal of Animal Research. 48: 585-592.
  16. Wu, Q.J., Jiao, C., Liu, Z.H., Li, S.W., Zhu, D.D., Ma, W.F., Wang, Y.Q., Wang, Y. and Wu, X.H. (2019). Effect of glutamine on the intestinal function and health of broilers challenged with Salmonella pullorum. Indian Journal of Animal
  17. Research. 53: 1210-1216.
  18. Rachid S., Ohlsen K., Witte W., Hacker J., Ziebuhr W. (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother. 44: 3357-3363.
  19. Chakraborty, S. Roychoudhury, ,P., Samanta, I., Subudhi, P.K., Lalhruaipuii, Das, M., De, A., Bandyopadhayay, S., Joardar, S.N., Mandal, M., Qureshi, A. and Dutta, T.K. (2019). Molecular detection of biofilm, virulence and antimicrobial resistance associated genes of Salmonella serovars isolated from pig and chicken of Mizoram, India. Indian Journal of Animal Research. B-3817. 1-6.
  20. Rabins, S.L., Bhattacharya, A., Ajay Kumar, V.J. and Vijayan, C. (2018). PCR based detection and Biofilm formation of Salmonella from fresh coriander leaves (Coriandrum sativum). Asian Journal of Dairy and Food Research. 37: 144-148.
  21. Sato Y., Unno Y., Ubagai T., Ono Y. (2018). Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PLoS One. 13: e0194556.
  22. Seitz M., Valentin-Weigand P., Willenborg J. (2016). Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis. Curr Top Microbiol Immunol. 398: 103-121.
  23. Soares T.C., Paes A.C., Megid J., Ribolla P.E., Paduan Kdos S., Gottschalk M. (2014). Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil. Can J Vet Res. 78: 145-149.
  24. Vinod Kumar K., Lall C., Vimal Raj R., Vedhagiri K., Sunish I.P., Vijayachari P. (2018). Can subminimal inhibitory concen-
  25. -trations of antibiotics induce the formation of biofilm in leptospira? Microb Drug Resist. 2: 1040-1042.
  26. Wang Y., Liu B., Li J., Gong S., Dong X., Mao C., Yi L. (2019). LuxS/AI-2 system is involved in fluoroquinolones susceptibility in Streptococcus suis through overexpression of efflux pump SatAB. Vet Microbiol. 233: 154-158.
  27. Wang Y., Wang Y., Sun L., Grenier D., Yi L. (2018a). The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol. 102: 7231-7238.
  28. Wang Y., Wang Y., Sun L., Grenier D., Yi L. (2018b). Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol. 102: 9121-9129.
  29. Wang Y., Yi L., Zhang Z., Fan H., Cheng X., Lu C. (2014a). Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer -2 signaling. Curr Microbiol. 68: 575-580.
  30. Wang Y., Yi L., Zhao M. L., Wu J. Q., Wang M. Y., Cheng X.C. (2014b). Effects of zinc-methionine on growth performance, intestinal flora and immune function in pigeon squabs. Br Poult Sci. 55: 403-408.
  31. Wang Y., Zhang W., Wu Z., Lu C. (2011a). Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiology Letters. 316: 36-43.
  32. Wang Y., Zhang W., Wu Z., Zhu X., Lu C. (2011b). Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet Microbiol. 152: 151-160.
  33. Wei Z., Li R., Zhang A., He H., Hua Y., Xia J., Cai X., Chen H., Jin M. (2009). Characterization of Streptococcus suis isolates from the diseased pigs in China between 2003 and 2007. Vet Microbiol. 137: 196-201.
  34. Wertheim H.F., Nghia H.D., Taylor W., Schultsz C. (2009). Streptococcus suis: an emerging human pathogen. Clin Infect Dis. 48: 617-625.
  35. Xiao G., Tang H., Zhang S., Ren H., Dai J., Lai L., Lu C., Yao H., Fan H., Wu Z. (2017). Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating
  36. capsule synthesis and by inducing biofilm formation in a mouse infection model. Vet Microbiol. 199: 111-119.
  37. Yang F., Huang X.H., Li G.H., Ni H.J., Zhao Y.D., Ding H.Z., Zeng Z.L. (2013). Estimating tulathromycin withdrawal time in pigs using a physiologically based pharmacokinetics model. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30: 1255-1263.
  38. Yuksel F.N., Karatug N.T., Akcelik M. (2018). Does subinhibitory concentrations of clinically important antibiotic induce biofilm production of Enterococcus faecium strains? Acta Microbiol Immunol Hung. 65: 27-38.

Global Footprints