Protective effects of selenium on malathion-induced testicular toxicity in mice

DOI: 10.18805/ijar.B-1083    | Article Id: B-1083 | Page : 335-341
Citation :- Protective effects of selenium on malathion-induced testicular toxicity in mice.Indian Journal Of Animal Research.2020.(54):335-341
Mahrous A. Ibrahim, Farooq A. Wani, Athar M. Khalifa, Mina T. Kelleni, Marwa M. Anwar, Ashokkumar Thirunavukkarasu and Mohammed U. Sayeed
farooqafroza@gmail.com
Address : Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia. 
Submitted Date : 30-12-2018
Accepted Date : 15-05-2019

Abstract

The aim of this study was to investigate the possible protective effect of the antioxidant sodium selenite (0.1 mg/kg/day) via gavage once a day for 30 days for the first time in a model of malathion (27 mg/kg/day) via gavage once a day for 30 days induced testicular toxicity in mice. Results of this study revealed that concomitant administration of selenium has prevented the decrease in mean final and relative body weight as well as testicular and relative testicular weight as compared to malathion group. Concomitant selenium administration has also decreased malondialdehyde contents and increased serum levels of follicle stimulating hormone, luteinizing hormone, testosterone, acetylcholinesterase and testicular levels and activities of glutathione, glutathione peroxidase, catalase, superoxide dismutase and improved the testicular histopathological features as compared to malathion group. 

Keywords

Organophosphate pesticides Oxidative stress Selenium Testicular toxicity.

References

  1. Adegoke, E. O., Wang, X., Wang, H., Wang, C., Zhang, H. and Zhang, G. (2018). Selenium (Na2SeO3) Upregulates Expression of Immune Genes and Blood-Testis Barrier Constituent Proteins of Bovine Sertoli Cell In Vitro. Biol Trace Elem Res.
  2. Akbel, E., Arslan-Acaroz, D., Demirel, H. H., Kucukkurt, I. and Ince, S. (2018). The subchronic exposure to malathion, an organo    phosphate pesticide, causes lipid peroxidation, oxidative stress and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb), 7: 503-512.
  3. Al-Othman, M. (2011). Protection of -tocopherol and selenium against acute effects of malathion on liver and kidney of rats. African Journal of Pharmacy and Pharmacology, 5: 1263-1271.
  4. Ali, R. I. and Ibrahim, M. A. (2018). Malathion induced testicular toxicity and oxidative damage in male mice: the protective effect of curcumin. Egyptian Journal of Forensic Sciences, 8: 70.
  5. Bahrami, S., Shahriari, A., Tavalla, M., Azadmanesh, S. and Hamidinejat, H. (2016). Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii. Oxid Med Cell Longev, 2016, 8045969.
  6. Baiomy, A. A., Attia, H. F., Soliman, M. M. and Makrum, O. (2015). Protective effect of ginger and zinc chloride mixture on the liver and kidney alterations induced by malathion toxicity. International journal of immunopathology and pharmacology, 28: 122-128.
  7. Buege, J. A. and Aust, S. D. (1978). Microsomal lipid peroxidation. Methods Enzymol, 52: 302-10.
  8. Bunglavan, S., Garg, A., Dass, R. and Shrivastava, S. (2018). Effect of varied levels of selenium supplementation in nano form on growth, nutrient intake and digestibility in Wistar albino rats. Indian Journal of Animal Research, 52.
  9. Cemek, M., Büyükben, A., Büyükokuroðlu, M. E., Aymelek, F. and Tür, L. (2010). Protective roles of vitamin E (á-tocopherol), selenium and vitamin E plus selenium in organophosphate toxicity in vivo: A comparative study. Pesticide biochemistry and physiology, 96: 113-118.
  10. Contreras, H. R. and Bustos-Obregon, E. (1999). Morphological alterations in mouse testis by a single dose of malathion. J Exp Zool, 284: 355-9.
  11. Durak, D., Uzun, F. G., Kalender, S., Ogutcu, A., Uzunhisarcikli, M. and Kalender, Y. (2009). Malathion-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitro. Environ Toxicol, 24: 235-42.
  12. Eddleston, M., Buckley, N. A., Eyer, P. and Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. Lancet, 371: 597-607.
  13. Ellman, G. L. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys, 82: 70-7.
  14. Geng, X., Shao, H., Zhang, Z., Ng, J. C. and Peng, C. (2015). Malathion-induced testicular toxicity is associated with spermatogenic apoptosis and alterations in testicular enzymes and hormone levels in male Wistar rats. Environmental toxicology and pharmacology, 39: 659-667.
  15. Ibrahim, M. A., El Masry, M. K., Moustafa, A. A., Hagras, A. M. and Ali, N. M. (2011). Comparison of the accuracy of two scoring systems in predicting the outcome of organophosphate intoxicated patients admitted to intensive care unit (ICU). Egyptian Journal of Forensic Sciences, 1: 41-47.
  16. Ince, S., Arslan-Acaroz, D., Demirel, H. H., Varol, N., Ozyurek, H. A., Zemheri, F. and Kucukkurt, I. (2017a). Taurine alleviates malathion induced lipid peroxidation, oxidative stress and proinflammatory cytokine gene expressions in rats. Biomedicine and Pharmacotherapy, 96: 263-268.
  17. Ince, S., Arslan-Acaroz, D., Demirel, H. H., Varol, N., Ozyurek, H. A., Zemheri, F. and Kucukkurt, I. (2017b). Taurine alleviates malathion induced lipid peroxidation, oxidative stress and proinflammatory cytokine gene expressions in rats. Biomed Pharmacother, 96: 263-268.
  18. Kara, O., Sari, E., Aksit, H., Yay, A., Aksit, D. and Donmez, M. I. (2016). Effects of selenium on ischaemia-reperfusion injury in a rat testis model. Andrologia, 48: 1267-1273.
  19. Koroliuk, M. A., Ivanova, L. I., Maiorova, I. G. and Tokarev, V. E. (1988). [A method of determining catalase activity]. Lab Delo, 16-9.
  20. Kotb, G. A., Gh, F. A., Ramadan, K. S. and Farid, H. E. (2016). Protective role of garlic against malathion induced oxidative stress in male albino rats. Indian Journal of Animal Research, 50: 324-329.
  21. Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47: 469-74.
  22. Miloševiæ, M. D., Paunoviæ, M. G., Matiæ, M. M., Ognjanoviæ, B. I. and Saièiæ, Z. S. (2017). The ameliorating effects of selenium and vitamin C against fenitrothion-induced blood toxicity in Wistar rats. Environmental toxicology and pharmacology, 56: 204-209.
  23. Mutlu-Turkoglu, U., Akalin, Z., Ilhan, E., Yilmaz, E., Bilge, A., Nisanci, Y. and Uysal, M. (2005). Increased plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in patients with angiographically defined coronary artery disease. Clin Biochem, 38: 1059-65.
  24. Ojha, A. and Srivastava, N. (2014). In vitro studies on organophosphate pesticides induced oxidative DNA damage in rat lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 761: 10-17.
  25. Selmi, S., Rtibi, K., Grami, D. and Marzouki, L. (2018). Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicology Reports.
  26. Sodhi, S., Sharma, A., Brar, A. and Brar, R. (2008). Effect of á tocopherol and selenium on antioxidant status, lipid peroxidation and hepatopathy induced by malathion in chicks. Pesticide biochemistry and physiology, 90: 82-86.
  27. Uzun, F. G., Kalender, S., Durak, D., Demir, F. and Kalender, Y. (2009). Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol, 47: 1903-8. 

Global Footprints