EFFECT OF PREGNANCY INDUCED OXIDATIVE STRESS ON CELLULAR DNA IN MEHSANA BUFFALOES

Article Id: ARCC809 | Page : 211 - 214
Citation :- EFFECT OF PREGNANCY INDUCED OXIDATIVE STRESS ON CELLULAR DNA IN MEHSANA BUFFALOES.Indian Journal Of Animal Research.2011.(45):211 - 214
M.M. Pathan1, A. Latif2, Hemen Das2, G.M. Siddiquee3, M.M. Vaidya1 and A.K. Singh1
Address : College of Veterinary Science & Animal Husbandry S.D. Agric. University, Sardarkrushinagar, Dantiwada - 385 506, India

Abstract

Oxidative stress represents an imbalance between the production of reactive oxygen species (ROS) and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting cellular damage.Pregnancy and lactation are though physiological processes, create stressful condition in animal’s body as manifested by oxidative stress. Present investigation was undertaken to study the effect of pregnancy induced oxidative stress on cellular DNA using single cell gel electrophoresis (Comet Assay). Increased mean comet cell percentage (12.36±1.88) was observed in pregnant buffaloes on the day of parturition as compared to non-pregnant buffaloes (2.97±1.22). There was also significant (P

Keywords

DNA damage Pregnancy Parturition Oxidative stress Mehsana buffalo.

References

  1. Aitken, R.J. and Krausz, C. (2001). Oxidative stress, DNA damage and the Y chromosome. Reproduction 122: 497-506.
  2. Casanueva, E and Viter, F.E. (2003). Iron and Oxidative Stress in Pregnancy. J. Nutr. 133:1700S-1708S.
  3. Chen, Chang-Yu, Wang, Yi-Fen, Huang, Wan-Ru and Huang, Yu-Tyng (2003). Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxic. Applied Pharmacol. 189:153–159.
  4. Cooke, M.S., Evans, M.D., Dizdarglu, M. and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB J. 17:1195-1214.
  5. Danadevi, K., Rozati, R., Banu, B. S. and Grover, P. (2004). In vivo genotoxic effects of nickel chloride in mice leukocytes using comet assay. Food Chem. Toxicol. 42 :751-757.
  6. Duthie, S. J., Ma, A., Ross, M. A. and Collins, A. R. (1996). Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Res. 56 : 1291-1295.
  7. Karowicz-Bilinska, A., Kornatowska, K.K., Bartosz, G. (2007). Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radical Res. 41(8) : 870 – 873.
  8. Kasai, H. (1997). Analysis of a form of oxidative DNA damage, 8-hydroxy-2'- deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 387 : 147–163.
  9. Page, K.R. (1993). The physiology of human placenta. p. 164. UCL Press Limited, London.
  10. Pathan,M.M., Latif A., Das, H., Siddique, G.M., Chaudhary, S.S. and Vadodaria, V. P. (2010a). Plasma trace Element changes in periparturient Mehsana buffaloes. Indian J. Anim. Nutrit. 27 (2): 134-137.
  11. Pathan,M.M., Latif A., Das, H., Siddique, G.M. and Vadodaria, V.P. (2010b). Antioxidant status in periparturient Mehsana buffaloes. Revista Veterinaria 21 (1): 754-757.
  12. Salmon,T. B., Evert, B. A., Song, B and Doetsch, P.W.(2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucliec Acids Res. 32 (12): 3712-3723.
  13. Sies, H. (1991). Oxidative stress II. Oxidants and Antioxidants. Academic Press, London.
  14. Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 : 184-191.
  15. Snedecor, G. W. and Cochran, W. G. (1994). Satistical Methods. 8th edn. Oxford and IBH Publishing Co, New Delhi, India.
  16. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartman, A., Cobayashi, H., Miyamae, Y., and Rajas, E. (2000). Single cell gel/ Comet assay: Guide line for in vitro and in vivo genetic toxicological testing. Environ. and Molecular Mutagenesis, 35 :206-221.

Global Footprints