Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 42 issue 1 (march 2021) : 80-86

Impact of Agricultural Practices and their Management Techniques on Soil Carbon Sequestration: A Review

Harmandeep Singh Chahal, Amanpreet Singh
1Department of Agriculture, Khalsa College, Amritsar-143 001, Punjab, India.
Cite article:- Chahal Singh Harmandeep, Singh Amanpreet (2020). Impact of Agricultural Practices and their Management Techniques on Soil Carbon Sequestration: A Review. Agricultural Reviews. 42(1): 80-86. doi: 10.18805/ag.R-2003.
Carbon emissions through various sources possess a great threat to the environment. An increase in carbon concentration in the atmosphere resulted in increased temperature. Escalating warmness in the environment started melting of glaciers, day by day water level in oceans also increasing at an alarming rate. Forests, oceans and agricultural soils act as a sink for atmospheric carbon. Sinking sites help in making the balance of various gases in the atmosphere. Managing agricultural soils provides a good opportunity for more carbon storage. Adoption of conservation tillage, incorporation or on surface management of crop residue and balanced fertilization helps in reducing carbon removal from soil. More organic matter means more humus formation and more carbon retention in soil. Such management practices not only boost soil carbon-storing capacity but also increase soil fertility through hiking nutrient availability to plants and microbial populations in the soil. Higher plant growth results in more assimilation of CO2 in the photosynthesis process.
  1. Aulakh, M.S., Khera, T.S., Doran, J.W. and Bronson, K.F. (2001). Managing crop residue with green manure, urea and tillage in a rice-wheat rotation. Soil Sci. Soc. Am. J. 65: 820-827.
  2. Baker, J.M., Ochsner, T.E., Venterea, R.T. and Griffis, T.J. (2007). Tillage and soil carbon sequestration – What do we really know? Agr. Ecosyst. Environ. 118: 1-5.
  3. Basche, A.D., Miguez, F.E., Kaspar, T.C. and Castellano, M.J. (2014). Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69(6): 471-82 
  4. Baveye, P.C. and Wander, M. (2019). The (bio) chemistry of soil humus and humic substances: why is the “new view” still considered novel after more than 80 years. Front. Environ. Sci. 7: 1-6.
  5. Berg, B. and Laskowski, R. (2006). Litter decomposition; a guide to carbon and nutrient turnover. Adv. Ecol. Res. 38: 20-71.
  6. Bijay-Singh, Gajri, P.R., Timsina, J., Yadavinder-Singh and Dhillon, S.S. (2002). Some issues on water and nitrogen dynamics in rice-wheat sequences on flats and beds in the Indo-    Gangetic plains. In: Modelling irrigated cropping systems, with special attention to rice-wheat sequence and raised bed planting. [Humphreys E, Timsina J, eds.], Proceeding of a Workshop, CSIRO Land and Water, Griffith, NSW, Australia. pp. 1-15.
  7. Bockheim, J.G. and Hartemink, A.E. (2017). Histosols. The soils of Wisconsin, World Soils Book Series, pp 179-184.
  8. Bronner, G. and Goss, K.U. (2011). Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence. Environ. Sci. Technol. 45(4): 1307-12.
  9. Campell, C.A., Selles, F., Lafond, G.P., Biederbeck, V.Q. and Zenter, R.P. (2001). Tillage-Fertilizer changes: effect on soil quality attributes under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 81(10): 157-165.
  10. Cawley, G.C. (2011). On the atmospheric residence time of anthropogenically sourced carbon dioxide. Energy Fuels. 25: 5503-5513.
  11. Chevallier, T., Blanchart, E., Girardin, C., Mariotti, A., Albrecht, A. and Feller, C. (2001). The role of biological activity (roots, earthworms) in medium-term C dynamics in vertisol under a Digitaria decumbens (Gramineae) pasture. Appl. Soil. Ecol. 16: 11-21.
  12. Cooperman, Y. (2016). Biochar and carbon sequestration. Solution Center for Nutrient Management, Published on September 30: 2016.
  13. Davies, D.B. and Finney, J.B. (2002). Reduced cultivations for cereals: research, development and advisory needs under changing economic circumstances. Kenilworth: Home Grown Cereals Authority.
  14. Dersch, G. and Bo hm, K. (2001). Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutr. Cycl. Agroecosyst. 60: 49-55.
  15. Eisenlord, S.D., Freedman, Z., Zak, D.R., Xue, K., He, Z. and Zhou, J. (2013). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Appl. Environ. Microbiol. 79 (4): 1191-1199.
  16. Eswaran, H., Berg, E.V.D. and Reich, P. (1993). Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57: 192-194.
  17. Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B. and Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 450: 277-281.
  18. Franzluebbers, A.J. (2008). Soil organic carbon sequestration with conservation agriculture in the southeastern USA: Potential and limitations. pp1-11.
  19. Goh, K.M. (2004). Carbon sequestration and stabilization in soils: implications for soil productivity and climate change. Soil Sci. Plant Nutr. 50: 467-476.
  20. Gopinath, K.A., Saha, S., Mina, B.L., Pande, H., Kumar, N., Srivastva, A.K. and Gupta, H.S. (2009). Yield potential of garden pea (Pisum sativum L.) varieties and soil properties under organic and integrated nutrient management systems. Arch. Agron. Soil. Sci. 55: 157-167.
  21. Gottschalk, P., Bellarby, J., Chenu, C., Foereid, B., Smith, P., Wattenbach, M., Zingore, S. and Smith, J. (2010). Simulation of soil organic carbon response at forest cultivation sequences using 13C measurements. Org. Geochem. 41: 41-54.
  22. Guo, L.B. and Gifford, R.M. (2002). Soil carbon stocks and land-use change: A meta-analysis. Glob. Chang. Biol. 8: 345-360.
  23. Haddix, M.L., Paul, E.A. and Cotrufo, M.F. (2016). Dual differential isotope labeling shows the preferential movement of labile plant constituents into mineral bonded soil organic matter. Glob. Chang. Biol. 22: 2301-2312.
  24. Havlin, J.L., Kissel, D.E., Maddux, L.D., Claassen, M.M. and Long, J.H. (1990). Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 54: 448-452.
  25. Heimann, M. and Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 451: 289-292.
  26. Himes, F.L. (1998). Nitrogen, sulfur and phosphorus and the sequestering of carbon. In: Soil processes and the carbon cycle. [Lal, R., Kimble, J.M., Follett, R.F. and Stewart, B.A. (eds)], CRC Press, Boca Raton, pp 315-319.
  27. Holeplass, H., Singh, B.R. and Lal, R. (2004). Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an Inceptisol in south-eastern Norway. Nutr. Cycl. Agroecosyst. 70: 167-177.
  28. Holland, J. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ. 103(1): 1-25.
  29. Houghton, R.A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus. 55B: 378-390.
  30. IEA. (2009). Report on CO2 emissions from fuel combustion. p. 124 
  31. IPCC. (2014). Climate change 2014 synthesis report summary for policymakers, The Intergovernmental Panel on Climate Change.
  32. Jiang, D., Hengsdijk, H., Dai, T.B., de Boer, W., Jiang, Q. and Cao, W.X. (2006). Long-term effects of manure and inorganic fertilizers on yield and soil fertility for winter-maize system in Jiangsu, China. Pedosphere. 16(1): 25-32.
  33. Jobbágy, E. and Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10(2): 423-436. 
  34. Jones, M.B. and Donnelly, A. (2004). C sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 164(3): 423-439. 
  35. Kaiser, M., Ellerbrock, R.H., Wulf, M., Dultz, S., Hierath, C. and Sommer, M. (2012). The influence of mineral characteristics on organic matter content, composition and stability of topsoils under long-term arable and forest land use. J. Geophys. Res. 117- G02018.
  36. Kambale and Tripathi, V.K. (2010). Biotic and abiotic processes as a carbon sequestration strategy. J. Environ. Res. Develop. 5: 240-251.
  37. Katyal, J.C., Rao, N.H. and Reddy, M.N. (2001). Critical aspects of organic matter management in the tropics: Example of India. Nutr. Cycl. Agroecosys. 61: 105-118.
  38. Kern, J. and Johnson, M. (1993). Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 57(1): 200-10.
  39. Kleber, M., Sollins, P. and Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry. 85: 9-24.
  40. Lal, R. (2004). Soil C sequestration impacts on global climate change and food security. Science. 304: 1623-1627.
  41. Lal, R. (2008). Carbon sequestration. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 362: 815-830.
  42. Lal, R., Reicosky, D. and Hanson, J. (2007). Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 93(1): 1-12.
  43. Lashermes, G., Gainvors-Claisse, A., Recous, S. and Bertrand, I. (2016). Enzymatic strategies and carbon use efficiency of a litter decomposing fungus grown on maize leaves, stems and roots. Front. Microbiol. 01315.
  44. Lemus, R. and Lal, R. (2005). Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 24: 1-21.
  45. Lorenz, K. and Lal, R. (2014). Soil organic C sequestration in agroforestry systems- A review. Agron. Sustain. Dev. 34: 443-454.
  46. Majumder, B., Mandal, B., Bandyopadhyay, P.K., Gangopadhyay, A., Mani, P.K., Kundu, A.L. and Mazumdar, D. (2008). Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil Sci. Soc. Am. J. 72(3): 775-785.
  47. Malik, A.A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J. and Vazquez, P.G. (2016). Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7: 1247.
  48. Martiny, J.B., Martiny, A.C., Weihe, C., Lu, Y., Berlemont, R. and Brodie, E.L. (2017). Microbial legacies alter decomposition in response to simulated global change. ISME J. 11 (2): 490-499.
  49. Mazeika, R., Staugaitis, G. and Baltrusaitis, J. (2016). Engineered pelletized organomineral fertilizers (OMF) from poultry manure, diammonium phosphate and potassium chloride. ACS Sustainable Chem. Eng. 4: 2279-2285. 
  50. Meng, L., Cai, Z.C. and Ding, W.X. (2005). Carbon contents in soils and crops as affected by long-term fertilization. Acta Pedologica Sinica. 42: 769-776.
  51. Mikutta, R., Kleber, M., Torn, M. and Jahn, R. (2006). Stabilization of soil organic matter: asso-ciation with minerals or chemical recalcitrance? Biogeochemistry. 77: 25-56.
  52. Mitsch, W.J. and Gosselink, J.G. (2007). Wetlands, 4th edn. Wiley, New York, pp 11-24.
  53. Nayak, P., Patel, D., Ramakrishnan, B., Mishra, A.K. and Samantaray, R.N. (2009). Long-term application effects of chemical fertilizer and compost on soil carbon under intensive rice-rice cultivation. Nutr. Cycl. Agroecosyst. 83: 259-269. 
  54. Nosberger, J., Blum, H. and Fuhrer, J. (2000). Crop ecosystem responses to climatic change: productive grasslands. In: Climate change and global crop productivity. [Hodges, H.F. (ed)] CAB International, Wallingford, pp 271-291.
  55. Oelkers, E.H. and Cole, D.R. (2008). Carbon dioxide sequestration: a solution to the global problem. Elements. 4: 305-310.
  56. Pittelkow, C.M., Linquist, B.A., Lundy, M.E., Liang, X., Van Groenigen, K.J., Lee, J., Van Gestel, N., Six, J., Venterea, R.T. and Van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Res. 183: 156-68.
  57. Pongratz, J., Reick, C., Raddatz, T. and Claussen, M. (2009). Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem. Cycles. 23: GB3488.
  58. Post, W.M., Cesar, I.R., Jastrow, J.D., Mccarl, B.A., Amonette, J.E., Bailey, V.L., Jardine, P.M., West, T.O. and Zhou, J. (2004). Enhancement of carbon sequestration in US soils. Bio. Sci. 54(10): 895-908.
  59. Prakash, D., Benbi, D. and Saroa, G.S. (2016). Effect of rate and source of phosphorus application on soil organic carbon pools under rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agric. Sci. 86: 1127-1132.
  60. Reeves, M., Lal, R., Logan, T. and Sigaran, J. (1997). Soil nitrogen and carbon response to maize cropping system, nitrogen source and tillage. Soil Sci. Soc. Am. J. 61: 1387-1392.
  61. Rotenberg, R. and Yakir, D. (2010). Contribution of semi-arid forests to the climate system. Science. 327: 451-454.
  62. Sahrawat, K.L. (2004). Terminal electron acceptors for controlling methane emissions from submerged rice soils. Commun. Soil Sci. Plant Anal. 35: 1401-1413.
  63. Sarangle, S., Rajasekaran, A., Benbi, D. and Chauhan, S. (2018). Biomass and carbon stock, carbon sequestration potential under selected land-use systems in Punjab. Forestry Research and Engineering: International Journal. 2: 75-80. 
  64. Sarma, U.J., Chakravarty, M., Bhattacharyya, H.C. (2013). Emission and sequestration of carbon in soil with crop residue incorporation. J. Indian Soc. Soil Sci. 61(2): 117-121.
  65. Schuman, G.E., Janzen, H.H., Herrick, J.E. (2002). Soil C dynamics and potential C sequestration by rangelands. Environ. Pollut. 116(3): 391-396.
  66. Sharma, P.K. and Bhushan, L. (2001). Physical characterization of a soil amended with organic residues in a rice-wheat cropping system using a single value soil physical index. Soil Tillage Res. 60: 143-152.
  67. Singh, B. and Rengel, Z. (2007). The Role of crop residues in improving soil fertility. Soil Biol. 10: 183-213.
  68. Sistla, S.A., Rastetter, E.B. and Schimel, J.P. (2014). Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol. Monogr. 84: 151-170.
  69. Torn, M., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M. and Hendricks, D.M. (1997). Mineral control of soil organic carbon storage and turnover. Nature. 389: 170-173.
  70. Trumbore, S.E., Davidson, E.A., de Camargo, P.B., Nepstad, D.C. and Martinelli, L.A. (1995). Belowground cyclingof carbon in forests and pastures of Eastern Amazonia. Global Biogeochemical Cycles. 9: 515-528.
  71. UCSUSA. (2019). Each Country’s Share of CO2 Emissions, Union of Concerned Scientists.
  72. Van der Heijden, M.G., Bardgett, R.D. and van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11: 296-310.
  73. Whalen, J.K., Hu, Q. and Liu, A. (2003). Manure applications improve aggregate stability in conventional and no-tillage systems. Soil Sci. Soc. Am. J. 67: 1842-1847. 
  74. WMO. (2006). World Meteorological Organization. Greenhouse Gas Bulletin. Geneva, Switzerland: World Meteorological Organization, 2006.

Editorial Board

View all (0)