Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 39 issue 4 (december 2018) : 307-313

Remote sensing and its use in detection and monitoring plant diseases: A review

N.K. Gogoi, B. Deka, L.C. Bora
1Regional Agricultural Research Station, Assam Agricultural University, North Lakhimpur-787 032, Assam, India.
Cite article:- Gogoi N.K., Deka B., Bora L.C. (2018). Remote sensing and its use in detection and monitoring plant diseases: A review. Agricultural Reviews. 39(4): 307-313. doi: 10.18805/ag.R-1835.
Remote sensing is a rapid, non-invasive and efficient technique which can acquire and analyze spectral properties of earth surfaces from various distances, ranging from satellites to ground-based platforms. This modern technology holds promise in agricultural crop production including crop protection. Variability in the reflectance spectra of plants resulting from occurrence of disease and pests, allows their identification using remote sensing data. Various spectroscopic and imaging techniques like visible, infrared, multiband and fluorescence spectroscopy, fluorescence imaging, multispectral and hyperspectral imaging, thermography, nuclear magnetic resonance spectroscopy etc. have been studied for the detection of plant diseases. Several of these techniques have great potential in phytopathometry. Remote sensing technologies will be extremely helpful to greatly spatialize diagnostic results and thereby rendering agriculture more sustainable and safe, avoiding expensive use of pesticides in crop protection. 
  1. Apan, A., Held, A., Phinn, S., Markley, J. (2004). Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 25:489-498.
  2. Belasque, L., Gasparoto, M.C.G., Marcassa, L.G. (2008). Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Applied Optics 47:1922–1926.
  3. Berdugo, C., Zito, R., Paulus, S., Mahlein, A.K. (2014). Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 63:1344-1356.
  4. Bergstrasser, S., Fanourakis, D., Schmittgen, S., Cendrero-Mateo, M. P., Jansen, M., Scharr, H., Rascher, U. (2015). HyperART: non-    invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging. Plant Methods 11:1.
  5. Bock, C. H., Parker, P. E., Cook, A. Z., Gottwald, T. R. (2008). Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis. 92:530-541.
  6. Bravo, C., Moshou, D., West, J., McCartney, A. Ramon, H. (2003). Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering 84 (2):137–145.
  7. Burling, K., Hunsche, M., Noga, G. (2011). Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in wheat. J. Plant Physiol. 168:1641-1648.
  8. Camargo, A., and Smith, J. S. (2009). Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric. 66:121-125.
  9. Chaerle, L., Hagenbeek, D., De Bruyne, E., Van der Straeten, D. (2007). Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tiss. Org. 91:97-106.
  10. Chaerle, L., Lenk, S., Hagenbeek, D., Buschmann, C., Straetena, D.V.D. (2007). Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. Journal of Plant Physiology 164 : 253-262.
  11. Choi, Y.H., Tapias, E.C., Kim, H.K., Lefeber, A.W.M., Erkelens, C., Verhoeven, J.T.J., Brzin, J., Zel, J., Verpoorte, R. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology 135:2398–2410.
  12. Colwell, R. N. (1956). Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 26:223-286.
  13. Costa, G., Noferini, M., Fiori, G., Spinelli, F. (2007). Innovative application of nondestructive techniques for fruit quality and disease diagnosis. Acta Horticulturae 753:275–282.
  14. Dakshinamurti, C., Krishnamurthy, B., Summan-war, A.S., Shanta, P., Pisharoty, P.R. (1971). Remote sensing for coconut wilt. pp. 25-    29. In: Proceedings of 6th International Symposium on Remote Sensing of Environment. Environmental Research Institute at Michigan, Ann Arbor, U.S.A. 
  15. Das, D.K., Pradhan, S., Sehgal, V.K., Sahoo, R.N., Gupta, V.K., Singh, R. (2013). Spectral reflectance characteristics of healthy and yellow mosaic virus infected soybean (Glycine max L.) leaves in a semiarid environment. Journal of Agrometeorology 15: 36-38.
  16. Delalieux, S., van Aardt, J., Keulemans, W., Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur. J. Agron. 27:130-143.
  17. Delwiche, S.R. and Kim, M.S. (2000). Hyperspectral imaging for detection of scab in wheat. Proceedings of SPIE 4203: 13–20.
  18. Franke J. and Menz G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture 8:161–172.
  19. Garcia-Ruiz, F., Sankaran, S., Mari Maja, J., Lee, W.S., Rasmussen, J., Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture 91: 106–115.
  20. Graeff, S., Link, J., Claupein, W. (2006). Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central European Journal of Biology 1: 275–288.
  21. Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., Wang, J. (2007). Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 8: 187-197.
  22. Jensen, J. R. (2000). Remote Sensing of the Environment: An Erath Resource Perspective, Prentice-Hall.
  23. Konanz, S., Kocsanyi, L., Buschmann, C. (2014). Advanced multi-color fluorescence imaging system for detection of biotic and abiotic stresses in leaves. Agriculture 4:79-95.
  24. Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, E.-C., Steiner, U., Mahlein, A.-K. (2015). Hyperspectral phenotyping on microscopic scale – towards automated characterization of plant-pathogen interactions. Plant Methods 11:28.
  25. Lindenthal, M., Steiner, U., Dehne, H.W. and Oerke, E.C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95(3):233-240
  26. Mahlein, A.K. (2016). Plant disease detection by imaging sensors-Parrels and specific demands for precision agriculture and plant phenotyping. Plant disease 100:241-251.
  27. Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W. (2012). Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209.
  28. Mahlein, A.K., Steiner, U., Dehne, H.-W., Oerke, E.-C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11:413-431.
  29. Moshou, D., Bravo, C., Wahlen, S., West, J., McCartney, A., De Baerdemaeker, J., Ramon, H., (2006). Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precision Agriculture 7:149-164.
  30. Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H. (2004). Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 44:173-188.
  31. Naidu, R.A., Perry, E.M., Pierce, F.J., Mekuria, T. (2009). The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture 66:38–45.
  32. Neumann, M., Hallau, L., Klatt, B., Kersting, K., Bauckhage, C. (2014). Erosion band features for cell phone image based plant disease classification. Pages 3315-3320 in: Proceeding of the 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24-28 August 2014.
  33. Oerke, E.-C., Frohling, P., Steiner, U. (2011). Thermographic assessment of scab disease on apple leaves. Precis. Agric. 12:699-715.
  34. Oerke, E.-C., Steiner, U., Dehne, H.-W., Lindenthal, M. (2006). Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J. Exp. Bot. 57:2121-2132.
  35. Polder, G., van der Heijden, G. W. A. M., van Doorn, J., Baltissen, T. A. H. M. C. (2014). Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosystems Eng. 117:35-42.
  36. Qin, J., Burks, T.F., Kim, M.S., Chao, K., Ritenour, M.A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety 2:168–177.
  37. Qin, J., Burks, T.F., Ritenour, M.A., Bonn, W.G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering 93:183–191.
  38. Qin, Z. and Zhang, M. (2005). Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 7:115–128.
  39. Ray, S.S., Jain, N., Arora, R.K., Chavan, S., Panigrahy, S. (2011). Utility of hyperspectral data for potato late blight disease detection. J Indian Soc Remote Sens 39:161–169.
  40. Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., Guillaumes, J., Manceau, C., Jaques, M.-A., Boureau, T. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17.
  41. Sahoo, R.N., Ray, S.S., Manjunath, K.R. (2015). Hyperspectral remote sensing of agriculture. Current Science 108:848-859.
  42. Sankaran, S., Mishra, A., Ehsani, R., Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72: 1–13.
  43. Shafri, H.Z.M. and Hamdan, N. (2009). Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red edge techniques. American Journal of Applied Sciences 6: 1031-1035.
  44. Sighicelli, M., Colao, F., Lai, A., Patsaeva, S. (2009). Monitoring post-harvest orange fruit disease by fluorescence and reflectance hyperspectral imaging. ISHS Acta Horticulturae 817:277–284.
  45. Wang, X., Zhang, M., Zhu, J., Geng, S. (2008). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int. J. Remote Sens. 29:1693-1706.
  46. Zhang, M., Qin, Z., Liu, X. (2005). Remote sensed spectral imagery to detect late blight in field tomatoes. Precision Agriculture 6 :489–508. 

Editorial Board

View all (0)