Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 39 issue 2 (june 2018) : 151-156

Hepatic stem cells and their enzymatic markers- A review

Amit Kumar, Sourabh Sulabh
1Faculty of Veterinary and Animal Sciences, IAS, Banaras Hindu University, Varanasi-221 005, Uttar pradesh, India.
Cite article:- Kumar Amit, Sulabh Sourabh (2018). Hepatic stem cells and their enzymatic markers- A review. Agricultural Reviews. 39(2): 151-156. doi: 10.18805/ag.R-1775.
Stem cells are those cells which show capacity for self-renewal and ability to give rise to multiple differentiated cellular populations. Enzymatic activity, as a marker for cell proliferation and cell viability, is used by metabolic activity assays. Liver stem cells/progenitor cells can be a useful source of liver treatment.  They can repopulate and restore injured liver. Fetal liver stem/ progenitor cells have been found to be more capable in this, but are subjected to ethical issues. Adult liver stem cells and stem cells from animals can be used. Alkaline phosphatase and lactate dehydrogenase are enzymatic markers of in vitro hepatocyte culture. During in vitro cell culture, in the culture medium, secreted alkaline phosphatase activity increases during exponential growth of cells, whereas low extracellular lactate dehydrogenase activity indicates increased number of viable cells. Alkaline phosphatase and lactate dehydrogenase activities can be used to assess hepatocytes proliferation in vitro. 
  1. Allen, M.J. (2003). Biochemical markers of bone metabolism in animals: uses and limitations. Vet. Clin.Pathol., 32:101–113.
  2. Allen, M.J., Hoffmann, W.E., Richardson, D.C. and Breur, G.J. (1998). Serum markers of bone metabolism in dogs. Am. J. Vet. Res., 59: 250–254.
  3. Anderson, D.J., Gage, F.H. and Weissman, I.L. (2001). Can stem cells cross lineage boundaries? Nat. Med., 7: 393-395.
  4. Anuforo, D. C., Acosta, D. and Smith, R. V. (1978). Hepato-toxicity studies with primary cultures of rat liver cells. In Vitro, 14: 981-987.
  5. Balinsky, D., Cayanis, E., Geddes, E.W. and Bersohn, I. (1973). Activities and Isoenzyme Patterns of Some Enzymes of Glucose Metabolism in Human Primary Malignant Hepatoma. Cancer Research, 33: 249-255.
  6. Bianco, P. and Robey, P.G. (2001). Stem cells in tissue engineering. Nature, 414: 118–121.
  7. Calvo, M.S., Eyre, D.R. and Gundberg, C.M. (1996). Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev., 17: 333–368.
  8. Chunmeng, S. and Tianmin, C. (2004). Skin: a promising reservoir for adult stem cell populations. Med. Hypotheses, 62: 683-688. 
  9. Clampitt, R. B. and Hart, R. J. (1978). The tissue activities of some diagnostic enzymes in ten mammalian species. J. Comp. Path., 88: 607- 621.
  10. Collis, K. A. and Stark, A. J. (1977). Enzyme activities in tissues of clinically normal Large White pigs. Variations with age and sex. Research in Veterinary Science, 23: 326-330.
  11. Combes, B. and Schenker, S. (1969). In Diseases of the Liver, 3rd ed., edited by L. Schiff. Lippincott, Philadelphia and Toronto.
  12. Crivellari, D., Price, K.N. and Hagen, M. (1995). Routine tests during follow-up of patients after primary treatment for operable breast cancer. International (Ludwig) Breast Cancer Study Group (IBCSG). Ann. Oncol, 6 (8): 769–776.
  13. Crofton, P.M. (1982). Biochemistry of alkaline phosphatase isoenzymes. Crit. Rev. Clin. Lab. Sci., 16: 161–194. 
  14. Dabeva, M.D., Petkov, P.M., Sandhu, J., Oren, R., Laconi, E., Hurston, E. and Shafritz, D.A. (2000). Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am. J. Pathol., 156: 2017–2031.
  15. Dan, Y.Y., Riehle, K.J. and Lazaro, C. (2006). Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc. Natl. Acad. Sci. USA, 103: 9912–9917.
  16. Darinskas, A., Gasparaviciute, R., Malisauskas, M., Wilhelm, K., Kozhevnikov, J., Liutkevicius, E., Pilinkiene, A. and Morozova-    Roche, L. (2007). Engrafting fetal liver cells into multiple tissues of healthy adult mice without the use of immunosuppressants. Cellular and Molecular Biol. Lett., 12(3): 422-434.
  17. De Bari, C., Dell’Accio, F. and Vandenabeele, F. (2003). Skeletal muscle repair by adult mesenchymal stem cells from synovial membrane. J. Cell Biol., 160 (6): 909- 918.
  18. Ehrhart, N., Dernell, W.S., Hoffmann, W.E., Weigel, R.M., Powers, B.E. and Withrow, S.J. (1998). Prognostic importance of alkaline phosphatase activity in serum from dogs with appendicular osteosarcoma: 75 cases (1990–1996). J. Am. Vet. Med. Assoc., 213:1002–1006.
  19. Emmelot, P. and Bos, C.J. (1971). Studies on Plasma Membranes. XV. A Sex Difference in Alkaline Phosphatase Activities of Plasma Membranes Isolated from Rat Liver. Biochim. Biophys. Acta., 249: 293-300. 
  20. Fang, L., Huang, Q., Chen, J., Peng, Y., Roop, D.R., Bedford, J.S. and Yuan, L.C. (2010). Apoptotic cells activate the “Phoenix rising” pathway to promote wound healing and Tissue regeneration. Sci. Signal., 3 (110):13-19.
  21. Gade, N.E., Amar Nath, Pratheesh, M.D., Dubey, P.K., Amarpal, Sai Kumar, G. and Taru Sharma, G. (2012). Stem Cell Therapy in Animal Sciences – A Review. Agri. Review, 33 (2): 150 –158.
  22. Grisham, J.W. and Thorgeirsson, S.S. (1996). Liver stem cells. In The Stem Cell Handbook (Potten, C. S., ed) Academic Press, New York.
  23. Haruna, Y., Saito, K., Spaulding, S., Nalesnik, M.A. and Gerber, M.A. (1996). Identification of bipotential progenitor cells in human liver development. Hepatology, 23: 476–481. 
  24. Hoffmann, W.E. (1988). Isoenzymes of alkaline phosphatase from liver and intestines of dogs and rabbits. In: Animal Clinical Biochemistry: The Future, ed. Blackmore D: 181–187.
  25. Hristova, E., Todrov, P. and Krill, A. (2009). Morphological characteristics of ovine fetal liver cells. World. J. Agri. Sci.,5 (4): 498-503.
  26. In’t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., Noort, W.A., Class, F.H.J., Willemze, R., Fibbe, W.E. and Kanhai, H.H.H. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation.Blood, 102: 1548-1549.
  27. Isern, J., Fraser, S., He, Z. and Baron, M. (2008). The fetal liver is a niche for maturation of primitive erythroid cells. Proceedings of the National Academy of Science of the USA, 105 (18): 6662-6667.
  28. Jankowski, R.J., Deasy, B.M. and Huard, J. (2002). Muscle derived stem cells. Gene Therapy, 9: 642-647.
  29. Jersky, J. (1974). Alkaline phosphatase in auxiliary liver transplantation. Gut, 15: 636- 643.
  30. Jia, W. and Zhou, Q. (2009). Isolation and characterization of liver epithelial progenitor cells from normal adult rhesus monkeys (Macacamulatta). Cell Research, 19:268-270. 
  31. Keller, P. (1973). The activity of enzymes in serum and tissues of clinically normal sheep.N.Z. Vet. J., 21: 221-227.
  32. Keller, P. (1981). Enzyme activities in the dog: tissue analyses, plasma values, and intracellular distribution. Am. J. Vet. Res., 42:575–582.
  33. Kenji, S. and Yosihiro, Y. (1987). The Autorelease of Alkaline Phosphatase from the Plasma Membrane during the Incubation of Cultured Liver Cell Homogenates.J. Biochem., 103 (1):195-200.
  34. Keshaviah, A., Dellapasqua, S., Rotmensz, N., Lindtner, J., and Crivellari, D., et al. (2007). CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven International Breast Cancer Study Group trials. Annals of Oncology, 18: 701–708.
  35. Kidney, B.A. and Jackson, M. L. (1988). Diagnostic value of alkaline phosphatise isoenzyme separation by affinity electrophoresis in the dog. Can. J. Vet. Res., 52:106–110.
  36. Lee, O.K., Kuo, T.K., Chen, W.M., Lee, K.D., Hsieh, S.L. and Chen, T.H. (2004). Isolation of multipotent MSCs from Umbilical cord blood. Blood, 103: 1669-1675.
  37. Letellier, M., Brière, N. Plante, G. E. and Petitclerc, C. (1987). Phosphate transport and alkaline phosphatase in confluent MDCK cell monolayers. Canadian Journal of Physiology and Pharmacology, 65(6):1151-1156.
  38. Lott, J.A. and Nemesanzky, E. (1986). In : Lott, L.A., Wolf, P.L., editors. Clinical Enzymology. New York: Field, Rich and Associates, Inc.: 213-244.
  39. Magnusson, P., Lofman, O. and Larsson, L. (1992). Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection.J. Chromatogr., 576: 79–86.
  40. Malhi, H. and Gupta, S. (2001). Hepatocyte transplantation: new horizons and challenges. J. Hepatobiliary Pancreat. Surg., 8: 40–50.
  41. Malhi, H., Irani, A.N., Gagandeep, S. and Gupta, S. (2002). Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J. Cell Sci., 115: 2679–2688.
  42. Matsunaga, T., Toba, M., Teramoto, T., Mizuya, M., Aikawa, K. and Ohmori, S. (2008). Formation of large vacuoles induced by cooperative effect of oncostatin M and dexamethasone in human fetal liver cells. Medical Molecular Morphology, 41(1): 53-58.
  43. Michalopoulos, G.K. and DeFrances, M.C. (1997). Liver regeneration. Science, 276: 60– 66.
  44. Miedema, E. (1968). Regulation of alkaline phosphatase in human cell cultures independent of hydrocortisone and sensitive to population density changes. Experimental Cell Research, 53: 488-496.
  45. Moog, F. (1965). In The Biochemistry of Animal Development, ed. Weber, R. (Academic Press, New York), 1: 307-365.
  46. Morini, S., Carotti, S., Carpino, G., Corradini, S.G., and Siciliano, M., et al. (2010). Hepatic progenitor niche activation as histological predictor of graft survival in liver transplantation. IJAE, 115 (1/2): 120.
  47. Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T. and Kaneda, Y. (2006). Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Throm., 13: 77-81.
  48. Nakahara, H., Dennis, J.E., Bruder, S.P., Haynesworth, S.E., Lennon, D.P. and Caplan, A.I. (1991). In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res., 195: 492-503.
  49. O’Donoghue, K. and Fisk, N. (2004). Fetal stem cells. Best Practice and Research Clinical Obstetrics and Gynaecol., 18(6): 853-875.
  50. Oertel, M. and Shafritz, D. (2008). Stem cells, cell transplantation and liver repopulation. Biochimica. Et. Biophysica. Acta., 1782(2): 61-74.
  51. Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M. and Gromp, M. (1997). Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol., 151: 1273–1280.
  52. Pirogova, I. and Pischkin, S. (2008). Regeneration therapy of chronic hepatitis and hepatic cirrhosis by fetal tissue transplantation. Cellular Transplantology and Tissue Engineering, 3 (1): 57-61. 
  53. Price, C.P. (1993). Multiple forms of human serum alkaline phosphatase: detection and quantitation. Ann. Clin. Biochem., 30:355– 372.
  54. Ratajczak, M., Zuba-Surma, E., Wysoczynski, M., Wan, W., Ratajczak, J., Wojakowski, W. and Kucia, M. (2008). Hunt for pluripotent stem cell-regenerative medicine; search for almighty cell. J. Autoimmunity, 30 (3): 151-162.
  55. Rodney W. F. and John, F. (1991). Quantifying Bone and Liver Alkaline Phosphatase by the Resolution of Two-Component Inactivation Data Obtained with a Centrifugal Analyzer. Clin. Chem., 37(3): 347-350.
  56. Rollini, P., Kaiser, S., Hull, E.F.V., Kapp, U. and Leyvraz, S. (2004). Long-term expansion of transplantable human fetal liver hematopoietic stem cells. Blood, 103: 1166–1170.
  57. Roskams, T. (2006). Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene, 25: 3818–3822.
  58. Rotenberg, Z., Weinberger, E., Davidson, J., Fuchs, J., Harell, D. and Agmon, J. (1989). Lactate dehydrogenase isoenzymes patterns in serum of patients with metastatic liver disease. Clin. Chem., 35: 871-873.
  59. Sabellek, W.M. (1988). Alkaline phosphatase: laboratory and clinical implications. J. Chromatogr., 429: 419–444. 
  60. Sandhu, J.S., Petkov, P.M., Dabeva, M.D. and Shafritz, D.A. (2001). Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am. J. Pathol. 159:1323–1334.
  61. Sanecki, R.K., Hoffmann, W.E. and Dorner, J.L. (1990). Purification and comparison of corticosteroid-induced and intestinal isoenzymes of alkaline phosphatase in dogs. Am. J. Vet. Res., 51:1964–1968.
  62. Sanecki, R.K., Hoffmann, W.E., Gelberg, H.B. and Dorner, J.L. (1987). Subcellular location of corticosteroid-induced alkaline phosphatase in canine hepatocytes. Vet. Pathol., 24: 296– 301.
  63. Schmelzer, E., Wauthier, E. and Reid, L. (2007). The phenotypes of pluripotent human hepatic progenitors. Stem Cells, 24(8): 1852-1858.
  64. Sela, B.A. and Sachs, L. (1974). Alkaline Phosphatase Activity and the Regulation of Growth in Transformed Mammalian Cells. J. Cellular Physiol., 83: 27-34.
  65. Sell, S. (1990). Is There a Liver Stem Cell? Cancer Res., 50: 3811-3815.
  66. Simon, F.R. and Sutherland, E. (1977). Hepatic alkaline phosphatase isoenzymes: isolation, characterization and differential alteration. Enzyme, 22: 80–90.
  67. Singh, S. N. and Kanungo, M. S. (1968). Alterations in Lactate Dehydrogenase of the Brain, Heart, Skeletal Muscle and Liver of Rats of Various Ages. J. Biol. Chem., 243 (17): 4526-4529.
  68. Solter, P.F. and Hoffmann, W.E. (1995). Canine corticosteroid-induced alkaline phosphatase in serum was solubilized by phospholipase activity in vivo. Am. J. Physiol., 269:278– 286.
  69. Strain, A.J., Crosby, H.A., Nijjar, S., Kelly, D.A. and Hubscher, S.G. (2003). Human liver-derived stem cells. Semin. Liver Dis., 23: 373–384.
  70. Syakalima, M. and Takiguchi, M. (1998). The canine alkaline phosphatases: a review of the isoenzymes in serum, analytical methods and their diagnostic application. Jpn. J. Vet. Res., 46: 3–11.
  71. Syakalima, M., Takiguchi, M., Yasuda, J. and Hashimoto, A. (1997). Separation and quantification of corticosteroid-induced, bone and liver alkaline phosphatise isoenzymes in canine serum. Zentralbl. Veterinarmed. A., 44: 603–610.
  72. Taylor, P., McElmurry, R., Lees, C., Harrison, D. and Blazar, B. (2002). Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood, 99(5):1870-1872.
  73. Terryn, S., Jouret, F., Vandenabeele, F., Smolders, I., and Moreels, M., et al. (2007). A primary culture of mouse proximal tubular cells, established on collagen coated membranes. Am. J. Physiol. Renal Physiol., 293: 476-485.
  74. Theise, N.D. (2003). Liver stem cells: prospects for treatment of inherited and acquired liver diseases. Expert. Opin. Biol. Ther., 3:403-408.
  75. Thorgeirsson, S.S. (1996). Hepatic stem cells in liver regeneration. The FASEB J., 10:1249-1257.
  76. Tolman, K.G., Peterson, P., Gray, P. and Hammar, S.P. (1978). Hepatotoxicity of salicylates in monolayer cell cultures. Gastroenterology, 74: 205-208.
  77. Wagers, A.J., Christensen, J.L. and Weissman, I.L. (2002). Cell fate determination from stem cells. Gene Ther., 9: 606-612. 
  78. Walkup, M.H. and Gerber, D.A. (2006). Hepatic stem cells: in search of. Stem Cells, 24 (8): 1833-1840.
  79. Yamada, Y., Fujimoto, A., Ito, A., Yoshimi, R. and Ueda, M. (2006). Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials, 27: 3766-3781.
  80. Yoshiko, N. and Stoward, P.J. (1997). Effects of Tissue Protectants on the Kinetics of Lactate Dehydrogenase in Cells. J. Histochem. Cytochem., 45: 1417-1425.
  81. Young, H.E., Steele, T.A., Bray, R.A., Hudson, J. and Floyd, J.A., et al. (2001). Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec., 264: 51-62.
  82. Zech, N.H. (2004). Adult stem cell Manipulation and possible clinical perspectives. Repoduc. Med. Endocrinol., 2: 91-99.
  83. Zhang, J., Yi, L., Jieli, L., Yisheng, C., Mei, L. and Stanton, E.B., et al. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental neurology, 95 (1):16-26.

Editorial Board

View all (0)