Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 37 issue 2 (june 2016) : 154-159

Genome modifications in crops employing engineered nucleases

Harshvardhan N. Zala, Tejas C. Bosamia1, Yogesh M. Shukla2, Sushil Kumar, Kalyani S. Kulkarni*
1<p>Department of Agricultural Biotechnology,&nbsp;Anand Agricultural University, Anand-388 110, India.</p>
Cite article:- Zala N. Harshvardhan, Bosamia1 C. Tejas, Shukla2 M. Yogesh, Kumar Sushil, Kulkarni* S. Kalyani (2016). Genome modifications in crops employing engineered nucleases . Agricultural Reviews. 37(2): 154-159. doi: 10.18805/ar.v0iof.9629.

Crop improvement aims at substantial enhancements in the quality, yield and stress resistance of crops to meet the increasing food demand of growing world population. Targeted genome modification of crop plants is one of the ways to achieve this. This technology supersedes conventional methods limited by the inefficiencies of random mutation, accuracy and stability. It employs site-directed nucleases to create breaks at specific points in the target genome for desired alteration with high-precision. There are four nucleases namely, LAGLIDADG homing endonucleases (LHEs), zinc finger nucleases (ZFNs),  transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) nucleases out of which three, ZFNs, TALENs and CRISPR have been highly studied and evaluated in various crop systems for economic trait. Potency of engineered nucleases lies in their efficacy to bring desired modification in diploid as well as in polyploid plant genomes. Modifications using genome editing are similar to natural or conventional method like induced mutations and are foreseen to waive regulatory actions as applicable to genetically modified organisms. This review seeks to emphasize on the employment of engineered nucleases in various crops plants till date.


  1. Ali, Zahir, Aala A., Ali I., Shakila A., Manal T. and Magdy M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol., 16 : 238.

  2. Arnould, S., Delenda, C., Grizot, S., Desseaux, C., Paques, F., Silva H. and Smith. J. (2011). The I–CreI meganuclease and its engineered derivatives : Applications from cell modification to gene therapy. Protein Eng. Des. Sel., 24: 27-31.

  3. Bogdanove, A.J., Schornack S. and Lahaye T.,(2010). TAL effectors : Finding plant genes for disease and defense. Curr. Opin. Plant Biol., 13: 394-401. 

  4. Costa, G.L., Bauer, J.C., McGowan, B., Angert M. and Weiner M.P. (1996). Site-directed mutagenesis using a rapid PCR-    based method. Methods Mol Biol., 57: 239-48.

  5. Curtin, S.J., Voytas D.F. and Robert. M.S. (2012). Genome engineering of crops with designer nucleases. The Plant Genome., 5 : 42-50.

  6. Curtin, S.J., Zhang, F., Sander, J.D., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., Dobbs , D., Joung, J.K., Voytas D.F. and Stupar. R.M. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases breakthrough technologies. Plant Physiol., 156: 466-473.

  7. Fu, Y., Sander, J.D., Reyon, D., Cascio V.M. and Joung. J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32 : 279-284.

  8. Gao, H., Smith, J., Yang, M., Jones, S., Nicholson, M.G., West, A. Falco, S.C., Jantz D. and Lyznik. L. (2010). Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J., 61 : 176-187.

  9. Hanin, M. and Paszkowskiy . J. (2003). Plant genome modification by homologous recombination. Curr Opin Plant Biol., 6 : 157–162. 

  10. Humanes, J.G. and Voytas. D.F. (2014). Wheat rescued from fungal disease. Nat. Biotechnol., 32: 886-887.

  11. Ji, Xiang., Huawei, Z., Yi, Z., Yanpeng, W. and Caixia G. (2015). Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1: 15144. 

  12. Jia, H. and Wang. N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE., 9 : e93806.

  13. Jiang, W., Zhou, H., Fromm, H. Bi, Yang, M. B. and Weeks. D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-    mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 41 :e188.

  14. Jones, H.D. (2015). Regulatory uncertainty over genome editing. Nat. Plants. 1: 1-3.

  15. Kay, S. and Bonas. U. (2009). How Xanthomonas type III effectors manipulate the host plant. Curr. Opin.Microbiol., 12 : 37-43.

  16. Kim, H. and Kim. J. (2014). A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15 : 321–334.

  17. Kim, Y.G., Cha J. and Chandrasegaran. S. (1996). Hybrid restriction enzymes: Zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. U S A, 93: 1156-1160.

  18. Kunkel, T.A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. U S A, 82 : 4 88–92. 

  19. Kuzma, J. and Kokotovich. A., (2011). Renegotiating GM crop regulation. EMBO reports., 12: 883-888.

  20. Li, J.F., Aach, J. Norville, J.E., McCormack, M., Zhang, D., Bush, J., Church J.M. and Sheen. J. (2013). Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat. Biotechnol., 31: 688-691.

  21. Li, T., Liu, B., Spalding , M.H., Weeks D.P. and Yang. B. (2012). High efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol., 30 : 390-392.

  22. Liang, Z., Zhang, K., Chen, K.L., Gao. C.X. (2013)Targeted mutagenesis in Zea mays using TALENs and the CRISPR/    Cas system. J. Gent. Genomics, 41 : 63–68.

  23. Reyon, D., Tsai, S.Q., Foden, J.A., Sander J.D., and Joung. J.K. (2012). FLASH assembly of TALENs for high-

  24. throughput genome editing. Nat. Biotechnol., 30 : 460-465.

  25. Sander, J.D. and Joung. J.K. (2014). CRIRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32 : 347-355.

  26. Sanjana, N.E., Cong, L., Zhou, Y., Cunniff, M. , Feng G. and Zhang. F., (2012). A transcription activator-like effector toolbox for genome engineering. Nat. Protoc., 7 : 171–192.

  27. Shan, Q., Zhang, Y., Chen, K., Zhang K., and Gao. C., (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J., 1-10.

  28. Shukla, V.K., Doyon, Y., Miller, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M. Rock, J.M., Wu, Y., Zhang, L., Rebar, E.J., Gregory P.D. and Urnov. F. D. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459 : 437-441.

  29. Stoddard, B.L. (2011). Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure., 19 : 7-15.

  30. Sun, Z., Li, G., Huang, N., Xu, J., Pan, Y., Wang, Z., Tang, Q., Song M., and Wang. X. (2013). Site-specific gene targeting using Transcription Activator-Like Effector (TALE)-based nuclease in Brassica oleracea. J. Integr. Plant Biol., 55 : 1092-103.

  31. Tzfira, T., Weinthal, D., Marton, I., Zuker A., and Vainstein. A. (2012). Genome modifications in plant cells by custom-    made restriction enzymes. Plant Biotechnol. J., 10 : 373-389.

  32. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. and Gregory. P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet., 11 : 636-    646.

  33. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao C. and Qiu. J. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 32 : 947-951.

  34. Wendt, T., Holm, P.B., Starker, C.G., Christian, M., Voytas, D.F., Brinch-Pedersen H. and Holme. I.B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol. Biol., 83 : 279-285.

     

Editorial Board

View all (0)