Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 42 issue 2 (june 2021) : 166-174

Medicinal VOCs in Plants Recommended for Prairie Strips and Pollinator Gardens as Prophylactic and Curative Support for Pollinating Insects: A Review

Linda Schweitzer
1Southern University Agricultural Research and Extension Center, Baton Rouge, LA 70813 USA.
Cite article:- Schweitzer Linda (2021). Medicinal VOCs in Plants Recommended for Prairie Strips and Pollinator Gardens as Prophylactic and Curative Support for Pollinating Insects: A Review. Agricultural Reviews. 42(2): 166-174. doi: 10.18805/ag.R-157.
Plant VOCs are signaling compounds that attract pollinators, protect plants from stress, disease and predation, have allelopathic effects and play a role in plant growth and development. The purpose of this review was to evaluate pollinator plants for secondary metabolite VOCs such as monoterpenes and sesquiterpenes for their potential medicinal value to pollinating insects. To address disease pathogens impacting native pollinators and honeybees, plants with medicinal VOCs can be selected for prairie strips and pollinator gardens as agricultural best management practices. Eight flowering plants - bee balm, echinacea, catmint, prairie rose, lavender, thyme, oregano and red clover contain VOCs in their nectars and pollens such as caryophyllene, myrcene, germacrene, cymene, thymol, cineol, carvacrol, borneol, nonanal, linalool and terpineol that offer antimicrobial, antifungal, anti-inflammatory, antioxidant benefits and some are acaricides that may aid in controlling the Varroa destructor mite (=jacobsoni). 
  1. Afoulous, S., Emmanual, F., Raoelison, G., Valentin, A., Moukarzel, B., Couderc, F. and Bouajila, J. (2013). Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chemistry and Toxicology. 56: 352-362. doi:10.1016/j.fct.2013.02.008.
  2. Anderson, D.L. and Trueman, J.W.H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental Applied Acarology. 24(3): 165-189.
  3. Astani, A. and Schnitzler, P. (2014). Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iranian Journal of Microbiology. 6(3): 149-155.
  4. Bandoni, A., Van Baren, C.M., Equaras, M., Gende, L.B., Di Leo Lira, A., Fritz, R. (2010). Antimicrobial and miticide activities of Eucalyptus globulus essential oils obtained from different Argentine regions. Spanish Journal of Agricultural Research. 8(3): 642-650.
  5. Baracchi, D., Marples, A., Jenkins, A.J., Leitch, A.R., Chittka, L. (2017). Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Scientific Reports. 7: 1951. doi: 10.1038/s41598-017-01980-1.
  6. Baser, K.H. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design. 14(29): 3106-3119.
  7. Baumann, L. and Weisberg, E. (2010). Chapter 122 - Olive Oil in Botanical Cosmeceuticals. In: Olives and Olive Oil in Health and Disease Prevention, pp. 1117-1124. doi:10.1016/B978-0-12-374420-3.00122-4.
  8. Begley, T.P., Keeling, C.I. and Bohlmann, J. (2008). Plant Terpenoids. In: Wiley Encyclopedia of Chemical Biology, [T.P. Begley (Ed.)].doi:10.1002/9780470048672.wecb596.
  9. Berenbaum, M.R. and Johnson, R.M. (2015). Xenobiotic detoxification pathways in honey bees. Current Opinion Insect Science. 10: 51-58.
  10. Birkett, M.A., Campbell, C.A.M., Chamberlain, K., Guerrieri, E., Hick, A.J., Martin, J.L., et al. (2000). New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences. 97(16): 9329-9334. doi: 10.1073/pnas.160241697.
  11. Cavaleiro, C., Pinto, E., Gonçalves, M. and Salgueiro, L. (2006). Antifungal activity of juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology. 100: 1333-1338. doi:10.1111/j.1365-2672. 2006.02862.x
  12. Chen, X., Zhang, Y., Zu, Y., Yang, L. (2012). Chemical composition and antioxidant activity of the essential oil of Schisandra chinensis fruits. Natural Product Research. 26(9): 842-849. doi:10.1080/14786419.2011.558016.
  13. Cherrat, L., Espina, L., Bakkali, M., Garcia-Gonzalo, D., Pagan, R., Laglaoui, A. (2014). Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture. 94: 1197-1204. doi:10.1002/jsfa.6397.
  14. Cusser, S. and Goodell, K. (2013). Diversity and distribution of floral resources influence the restoration of plant–pollinator networks on a reclaimed strip mine. Restoration Ecology. 21: 713-721. 
  15. Dai, J.P., Zhao, X.F., Zeng, J., Wan, Q.Y., Yang, J.C., Li, W.Z., Chen, X.X., Wang, G.F., Li, K.S. (2013). Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One. 8(4): e61026.
  16. De Cássia da Silveira e Sá, R. andrade, L.N., De Sousa, D.P. (2013). A review on anti-inflammatory activity of monoterpenes. Molecules.18: 1227-1254.
  17. Ding, W., Liping, N., Xing, H., Wei, Z., Zhoua, Q., Nong, R., Chen, J. (2018). Essential oil extracted from leaf of Phoebe bournei (Hemsl.) yang: chemical constituents, antitumor, antibacterial, hypoglycemic activities. Natural Products Research. 23: 1-4. 
  18. Essenberg, C.J. (2012). Explaining variation in the effect of floral density on pollinator visitation. The American Naturalist. 180(2): 153-166.
  19. Evans, E., Smart, M., Cariveau, D., Spivak, M. (2018). Wild, native bees and managed honey bees benefit from similar agricultural land uses. Agriculture, Ecosystems and Environment. 268: 162-170.
  20. Fani, M., Kohanteb, J. (2017). In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. Journal of Evidence Based Alternative and Complementary Medicine. 22(4): 660-666. doi:10.1177/2156587217700772.
  21. Flamini, G. (2003). Acaricides of natural origin, personal experiences and review of literature (1990-2001). Book Chapter in, Studies in Natural Products Chemistry: Bioactive Natural Products (Part I) edited by Atta-ur-Rahman.
  22. George, S., Nair, S.A., Venkataraman, R., Baby, S. (2015). Chemical composition, antibacterial and anticancer activities of volatile oil of Melicope denhamii leaves. Natural Product Research. 29(20):1959-1962. doi:10.1080/14786419.2015.1013471.
  23. Giacomini, J.J., Tarpy, D.R. and Irwin, R.E., Leslie, J., Palmer-Young, E.C. and Adler, L.S. (2018). Medicinal value of sunflower pollen against bee pathogens. Scientific Reports. 8: 14394. doi: 10.1038/s41598-018-32681-y.
  24. Giweli, A., Džamić,A., Soković, M, Ristić, M.S. and Marin, P.D. (2012). Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules. 17(5): 4836-50. doi: 10.3390/molecules17054836.
  25. González, A.M., Tracanna, M.I., Amani, S.M., Schuff, C., Poch, M.J., Bach, H., Catalán, C.A. (2012). Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Natural Product Communications. 7(12): 1663-6.
  26. Govindarajan, M., Rajeswary, M., Benelli, G. (2016). Calarene: δ-cadinene, calarene and δ-4-carene from Kadsura heteroclitaessential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Combinatorial Chemistry and High Throughput Screening. 19(7): 565-71.
  27. Graham, K.K., Brown, S., Clarke, S., Rose, U.S.R., Starks, P.T. (2017). The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection. Behavioural Processes. 144: 5-12. 
  28. Gregorc, A., Alburaki, M., Sampson, B., Knight, P.R., Adamczyk, J. (2018). Toxicity of selected acaricides to honey bees (Apis mellifera) and varroa (Varroa destructor) and their use in controlling varroa within honey bee colonies. Insects. 9(2): 55.
  29. Guitton, Y., Nicol, F., Moja, S., Valot, N., Legranda, S., Jullien, F. and Legendre, L. (2009). Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. intermedia) inflorescence development. Physiologia Plantarum. 138(2): 150-63. doi:10.1111/j.13993054.2009.01315.
  30. Harris, M.A. and Iyer, G. (2014). Small changes, big impacts: Prairie conservation strips. Natural Resource Ecology and Management Publications. 129: 1-4.
  31. Healthybees, LLC. Healthy Bees™: A Unique Solution to Providing Balanced Nutrition.
  32. Herbertsson, L., L., Lindström, S.A.M., Rundlöf, M., Bommarco, R., Smith, G. (2016). Competition between managed honey bees and wild bumblebees depends on landscape context. Basic and Applied Ecology. 17(7): 609-616.
  33. James, D.G. 2003. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology. 32(5): 977-982.
  34. Jeong, H., Kwon, S., Kong, T.Y., Kim, J.H., Lee, H.S. (2014). Inhibitory effects of cedrol, β-cedrene and Thujopsene on Cytochrome P450 enzyme activities in human liver microsomes. Journal of Toxicology and Environmental Health, Part A. 77(22-24): 1522-1532. doi:10.1080/15287394.2014.955906.
  35. Johnson, R.M., Dahlgren, L., Siegfried, B.D., Ellis, M.D. (2013). Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One. 8(1): e54092. doi: 10.1371/journal.pone.0054092.
  36. Kalalinia, F., Behravan, J., Ramezani, M., Hassanzadeh, M.K. and Asadipour, A. (2008). Chemical composition, moderate in vitro antibacterial and antifungal activity of the essential oil of Pistacia vera L. and it’s major constituents. Journal of Essential Oil-Bearing Plants.11(4): 376-383. doi: 10.1080/0972060X.2008.10643643.
  37. Kessler, S.C., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Stout, J.C., Wright, G.A. (2015). Bees prefer foods containing neonicotinoid pesticides. Nature. 521: 74-76.
  38. Kessler, A., Halitschke, R. (2009). Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Functional Ecology. 23(5): 901-912. 
  39. Kohler, A., Pirk, C.W.W. and Nicolson, S.W. (2012). Honey bees and nectar nicotine: deterrence and reduced survival versus potential health benefits. Journal of Insect Physiology. 58(2): 286-292.
  40. Kigathi, R.N., Unsicker, S.B., Reichelt, M., Kesselmeier, J., Gershenzon, J., Weisser, W.W. (2009). Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. Journal of Chemical Ecology. 35(11):1335-1348. 
  41. Kostiæ, Aleksandar and Milinèiæ, Danijel and Gašiæ, Uroš and Nedic, Nebojsa and Stanojevic, Sladjana and Tesic, Zivoslav and Pešiæ, Mirjana. (2019). Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT- Food Science and Technology. 112: 108244. doi: 10.1016/j.lwt. 2019.06.011.
  42. Kumari, I. and Kumar, R. (2020). Pollen substitute diet for Apis mellifera: consumption and effects on colony parameters in sub-tropical Himalaya. Indian Journal of Agricultural Research. 54(2): 147-153.
  43. Lancette, J. (2017). Get to Know Tropilaelaps Mites, Another Serious Parasite of Honey Bees. Entomology Today. April 17, 2017.
  44. LeBlanc, B.W., Davis, O.K., Boue, S., DeLucca, A., Deeby, T. (2009). Antioxidant activity of Sonoran Desert bee pollen. Food Chemistry. 115(4): 1299-1305.
  45. Leyva-López, N., Gutiérrez-Grijalva, E.P., Vazquez-Olivo, G., Heredia, J.B. (2017). Essential oils of oregano: biological activity beyond their antimicrobial properties. Molecules. 22(6): 989. doi:10.3390/molecules22060989.
  46. Liebman, M., Helmers, M.J., Schulte, L.A. and Chase, C.A. (2013). Using biodiversity to link agricultural productivity with environmental quality: Results from three field experiments in Iowa. Renewable Agriculture and Food Systems. 28(2): 115-128. doi:10.1017/S1742170512000300.
  47. Lindberg, C.M., Melathopoulos, A.P., Winston, M.L. (2000). Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. Journal of Economic Entomology. 93(2):189-198. doi:10.1603/0022-0493-93.2.189.
  48. Lwande, W., Ndakala, AJ., Hassanali, A., Moreka, L., Nyandat, E., Ndungu, M., Amiani, H., Gitu, PM., Malonza, M., Punyua, D.K. (1999). Gynandropsis gynandra essential oil and its constituents as tick (Rhipicephalus appendiculatus) repellents. Phytochemistry. 50(3): 401-405.
  49. Mahdavi, A., Moradi, P., Mastinu, A. (2020). Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules. 25: 1091.
  50. Marchese, A., Arciola, C.R., Barbieri, R., Sanchez Silva, A., Nabavi, S.F., Sokeng, A.J.T., Izadi, M., Jafari, N.J., Suntar, I., Daglia, M., Nabavi, S.M. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials. 10(8): 947. doi:10.3390/ma10080947.
  51. Martin, S., Padilla, E., Ocete, M.A., Galvez, J., Jiménez, J., Zarzuelo, A. (1993). Anti-inflammatory activity of the essential oil of Bupleurum fruticescens. Planta Medica. 59(6): 533-536. doi: 10.1055/s-2006-959755.
  52. Mishima, Y., Ohta, H., Suetomi, A. (2002). Essential oil mixture for miticide, miticide composition and spray for miticide. US Patent: US6932986B2.
  53. Montanari, Ricardo M., Barbosa, Luiz C.A., Demuner, Antonio J., Silva, Cleber J., Carvalho, Larissa S. and Andrade, Nélio J. (2011). Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Química Nova. 34(9): 1550-1555. doi:1590/S0100-4042201100 0900013.
  54. Mothershead, K., Marquis, R.J. (2000). Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Oenothera macrocarpa. Ecology. 81(1): 30-40. 
  55. NCBI database for chemicals: National Center for Biotechnology Information. PubChem Database. Accessed April 2020. URL:
  56. Park, K.R., Nam, D., Yun, H.M., Lee, S.G, Jang, H.J., Sethi, G., Cho, S.K., Ahn, K.S. (2011). β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Letters. 312(2): 178-88. DOI: 10.1016/j.canlet.2011.08.001. 
  57. Pavillard, E.R. and Wright, E.A. (1957). An Antibiotic from Maggots. Nature. 180: 916-917. 
  58. Petz, K., Calamita, T. and Schweitzer, L. (2019). Honey typing by comparison of flavor compounds in floral nectars and honey. The Meeting of Minds Journal of Undergraduate Research. 21.
  59. Phetsang, S., Panyakaew, J., Wangkarn S., Chandet, N., Inta, A., Kittiwachana, S., Pyne, S.G. and Mungkornasawakul, P. (2019). Chemical diversity and anti-acne inducing bacterial potentials of essential oils from selected Elsholtzia species. Natural Product Research. 33(4): 553-556. doi: 10.1080/14786419.2017.1395436.
  60. Putatunda, B.N., Aggarwal, K. and Mathur, R.B. (2001). Honey bee mites (Acarina), A challenge to beekeeping industry- A review. Agricultural Reviews. 22: 205-214.
  61. Romeo, F.V., De Luca, S., Piscopo, A., Poiana, M. (2008). Antimicrobial effect of some essential oils. Journal of Essential Oil Research. 20(4): 373-379.doi:10.1080/10412905.2008. 9700034.
  62. Ropars, L., Dajoz, I., Fontaine, C., Muratet, A., Geslin, B. (2019). Wild pollinator activities negatively related to honey bee colony densities in urban context. PLoS One. 14(9): e0222316. doi:10.1371/journal.pone.0222316.
  63. Rzepecka-Stojko A., Stojko J., Kurek-Górecka A., Górecki, A.K., Kabala-Dzik, A., Kubina, R. (2015). Polyphenols from bee pollen: structure, absorption, metabolism and biological activity. Molecules. 20(12): 21732–21749. DOI:10.3390/molecules201219800.
  64. Saad, EZ, Hussien, R., Saher F. and Ahmed, Z. (2006). Acaricide activities of some essential oils and their monoterpenoidal constituents against house dust mite Dermatophagoides pteronyssinus. Science B. 7(12): 957-962.
  65. Sabahi, Q., Gashout, H., Kelly, P.G., Guzman-Novoa, E. (2017). Continuous release of oregano oil effectively and safely controls Varroa destructor infestations in honey bee colonies in a northern climate. Experimental and Applied Acarology. 72: 263-275. 
  66. Saldanha, A.A., Vieira, L., Ribeiro, R.I.M.A., Thome, R.G., Dos Santos, H.B., Silva, D.B., Carolla, C.A., Martins de Oliveira, F., de Olaveira Lopes, D., de Siqueira, J.M. and Soares, A.C. (2019). Chemical composition and evaluation of the anti-inflammatory and antinociceptive activities of Duguetia furfuracea essential oil: Effect on edema, leukocyte recruitment, tumor necrosis factor alpha production, iNOS expression and adenosinergic and opioidergic systems. Journal of Ethnopharmacology. 231: 325-336. doi: 10.1016/j.jep.2018.11.017.
  67. Sammataro, D., Degrandi-Hoffmann, G., Needham, G., Wardell, G. (1998). Some volatile plant oils as potential control agents for varroa mites (Acari: Varroidae) in honey bee colonies (Hymenoptera: Apidae). American Bee Journal. 138: 681-685.
  68. Sammataro, D., Untalan, P., Guerrero, F. and Finley, J. (2005). The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. International Journal of Acarology. 31(1): 67. 
  69. Schmehl, D.R., Teal, P.E.A., Frazier, J.L. and Grozinger, C.M. (2014). Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). Journal of Insect Physiology. 71: 177-190.
  70. Sharifi-Rad, J., Hoseini-Alfatemi, S.M., Sharifi-Rad, M., Sharifi-Rad, M., Iriti, M., Sharifi-Rad, M., Sharifi-Rad, R., Raeisi, S. (2015). Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules. 20(4): 7034-7047. doi:10.3390/molecules20047034.
  71. Sökmen, M., Serkedjieva, J., Daferera, D., Gulluce, M., Polissious, M., Tepe, B., Akpulat, H.A., Sahin, F. and Sökmen, A. (2004). In vitro antioxidant, antimicrobial and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. Journal of Agricultural and Food Chemistry. 52(11): 3309-3312.
  72. Souza, M.C., Siani, A.C., Ramos, M.F.S., Menezes-de-Lima Jr, O., Henriques, M.G.M.O. (2003). Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Die Pharmazie - An International Journal of Pharmaceutical Sciences. 58(8): 582-586.
  73. Tao, W., Linfeng, Y., Shixiang, Z., (2017). Changes in the emission of volatile compounds from Hippophae rhamnoides ssp. sinensis induced by Holcocerus hippophaecolus (Lepidoptera: Cossidae). Indian Journal of Animal Research. 51: 726-731.
  74. Tiwari, M. and Kakkar, P. (2009). Plant derived antioxidants -Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicology in vitro: An International Journal Published in Association with BIBRA. 23(2): 295-301. doi: 10.1016/j.tiv.2008.12.014.
  75. USDA (2017). Varroa destructor. area/beltsville-md-barc/beltsville-agricultural-research-center/bee-research-laboratory/docs/varroa-destructor. Accessed September 10, 2020.
  76. Valente J, Zuzarte M, Gonçalves MJ, Lopes, M., Caveleiro, C., Salgueiro, L., Cruz, M.T. (2013). Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food and Chemical Toxicology. 62: 349-354. doi: 10.1016/j.fct.2013.08.083.
  77. Vaudo, A.D., Stabler, H.M., Patch, Tooker, J.F., Grozinger, C.M. and Wright, G.A. (2016). Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. Journal of Experimental Biology. 219: 3962-3970. doi:10.1242/jeb.140772.
  78. Vladimir-Knežević, S., Kosalec, I., Babac, M., Petrović, M., Petrović, J., Matica, B., Blažeković, B. Blažeković. (2012). Antimicrobial activity of Thymus longicaulis C. Presl essential oil against respiratory pathogens. Central European Journal of Biology. 7: 1109-1115.
  79. Wheeler, M.M. and Robinson, G.E. (2014). Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Scientific Reports. 4: 5726. doi:10.1038 /srep05726.
  80. Wiese, N., Fischer, J., Heidler, J., Lewkowski, O., Degenhardt, J., Erler, S. (2018). The terpenes of leaves, pollen and nectar of thyme (Thymus vulgaris) inhibit growth of bee disease-associated microbes. Scientific Reports. 8(1): 14634. doi: 10.1038/s41598-018-32849-6.
  81. Xie, Q., Fengzhou, L., Lei, Fang, Wenzhi, L., Chundong, G. (2020). The antitumor efficacy of β -elemene by changing tumor inflammatory environment and tumor microenvironment. BioMedical Research International. 22: 1-13. doi: 10.1155/2020/6892961.
  82. Xu, P., Zhu, F., Buss, G.K., Leal, W.S. (2015). 1-Octen-3-ol: the attractant that repels. F1000 Research. 4: 156. doi:10.12 688/f1000research.6646.1.
  83. Zhang, J.H., Sun, H.L., Chen, S.Y., Zeng, L., Wang, T.T. (2017). Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Botanical Studies. 58(1):13. 
  84. Zhong, W., Cui, Y., Yu, Q., Xie, X., Liu, Y., Wei, M., Ci, X., Peng, L. (2014). Modulation of LPS-stimulated pulmonary inflammation by borneol in murine acute lung injury model. Inflammation. 37:1148-1157. doi: 10.1007/s10753-014-9839-8.

Editorial Board

View all (0)