Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 37 issue 1 (march 2016) : 55-60

Molecular techniques in rumen biotechnology: A review

Manju G. Preedaa*1, Thulasiraman Parkunan2, Dhinesh Kumar R.2, Ramavathi J., Yazhini P., Aasif Ahmad Sheikh2, Mohammad Rayees Dar2, Lakshmi Priyadarshini2, Gunjan Baghel2, Chandrasekar T.2
1<p>Veterinary College and Research Institute,&nbsp;Namakkal -637 002, India.</p>
Cite article:- Preedaa*1 G. Manju, Parkunan2 Thulasiraman, R.2 Kumar Dhinesh, J. Ramavathi, P. Yazhini, Sheikh2 Ahmad Aasif, Dar2 Rayees Mohammad, Priyadarshini2 Lakshmi, Baghel2 Gunjan, T.2 Chandrasekar (2016). Molecular techniques in rumen biotechnology: A review . Agricultural Reviews. 37(1): 55-60. doi: 10.18805/ar.v37i1.9265.

This review analyses the use of molecular techniques in rumen microbial identification. The use of regular methods like roll tube and most probable number resulted in under estimation of rumen microbial growth. So molecular biology acts as an advanced tool for rumen microbial culture and identification of various new species. These techniques give complete descriptions of individual ruminal populations. Use of molecular techniques like PCR, DDGE and FISH, which also pave pathway for genetic manipulation of rumen microbes in the field of rumen manipulation. So the combination of traditional and molecular assays gives accurate and satisfactory results.

  1. Cikos, S. and Koppel, J. (2009). Transformation of real-time PCR fluorescence data to target gene quantity. Anal. Biochem. 384:1-10.

  2. Denman, S.E. and McSweeney, C. S. (2005). PCR-based methods for analysis of populations and gene expression quantitative Real time PCR. In ‘Methods in Gut Microbial Ecology for Ruminants’. (Ed. H. Makkar and C. S. McSweeney), Springer, The Netherlands.

  3. Ferrer, M., Beloqui, A. and Golyyshina, O.V. (2007). Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotech. J. 2:207-213.

  4. Hespell, R. B., Akin D. E. and Dehority B. A., (1997). Bacteria, fungi and protozoa of the rumen. In: R.I. Mackie, B.A. White, R.E. Isaacson (Editors). Gastrointestinal Microbes and Host Interactions: Gastrointestinal Microbiology. Chapman and Hall, 2:85-89.

  5. Klieve, A.V., Hennessey, D., Ouwerkerk, D., Forster, R.J., Mackie, R.I. and Attwood, G.T. (2003). Establishing populations of Megasphaera elsdenii YE34 and Butyrivibrio fibrisolvens YE44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 95:621-630.

  6. Leng, J., Zhong, X., Zhu, R.J., Yang, S.L., Gou, X. and Mao, H.M. (2011). Assessment of protozoa in Yunnan Yellow Cattle rumen based on the 18S rRNA sequences. Mol. Biol. Rep. 38:577-585.

  7. Pers, K., Zmora, P., Cieslak, A. and Szumacher-Strabel, M. (2011). Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. Journal of Animal and Feed Sciences. 20:315-337.

  8. Mackie, R.I., Aminov, R.I., Hu, W., Klieve, A.V., Ouwerkerk, D., Sundset, M.A. and Kamagata, Y. (2003). Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69:6808-6815.

  9. McSweeney, C.S., Denman, S., Wright, G. and Yu, Z. (2007). Application of Recent DNA/RNA based Techniques in Rumen Ecology. Asian-Aust. J. Anim. Sci. 20:283-294.

  10. Miron, J., Ben-Ghedalia, D. and Morrison, M. (2001). Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy.Sci. 84:1294-1309.

  11. MacKay, I.M. (2007). Real-time PCR in Microbiology: From Diagnosis to Characterization. Caister Academic Press.

  12. McSweeney, C.S., Denmanl, S.E., Wright, A.D.G. and Yu, Z. (2007). Application of recent DNA/RNA-based Techniques in Rumen Ecology. Asian-Aust. J. Anim. Sci. 20:283-294.

  13. Robert, B. (1987). Biotechnology and modifications of the rumen microbial ecosystem. Proceedings of the Nutrition Society. 46:407-43.

  14. Soliva, C.R., Meile, L., Hindrichsen, I.K., Kreuzer, M. and Machmuller, A. (2004). Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release. Anaerobe. 10:269-276

  15. Smith, C. J. and Hespell, R. B. (1983). Journal of Dairy Science. 66:1536-1546.

  16. Stabnikova, O., Liu, X.Y., Wang, J.Y. and Ivanov, V. (2006). Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl. Microbiol. Biotechnol., 73:696-702.

  17. Tajima, K., Aminov, R.I., Nagamine, T., Matsui, H., Nakamura, M. and Benno, Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774.

  18. Tatsuoka, N., Mohammed, N., Mitsumori, M., Tajima, K., Hara, K., Kurihara, M. and Itabashi, H. (2007). Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism. Anim. Sci. J. 78:512-518.

  19. Weidong, D.X., Dongmei, M., Huaming. and Metha, W. (2008). The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol. Biol. Rep. 35: 265-274.

  20. Yu, Z.T. and Morrison, M. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques, 36:808-812.

  21. Zhang, T. and Fang, H.H. (2006). Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70:281-289.

  22. Ziemer, C.J., Sharp, R., Stern, M.D., Cotta, M.A., Whitehead, T.R. and Stahl, D.A. (2000). Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Environ. Microbiol. 2:632–643.

Editorial Board

View all (0)