Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 37 issue 1 (march 2016) : 81-84

Impact of global warming on insect behavior - A review

M.G. Sable*, D.K. Rana
1<p>Department of Entomology,&nbsp;Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, India.</p>
Cite article:- Sable* M.G., Rana D.K. (2016). Impact of global warming on insect behavior - A review . Agricultural Reviews. 37(1): 81-84. doi: 10.18805/ar.v37i1.9270.

Global warming is a great concern throughout the world. Being poikilothermic in nature insects are greatly affected by changing temperature. Insect will experience additional life cycles with rapid growth rate. As a result of changes in the population dynamics including distribution and migration the reliability on current insect pest ETL will be reduced. Increased insect pests outbreak will affect agricultural production. Research on basic biology of insect, population dynamics and behavior patterns should be focused to ascertain the effect of global warming on insect behavior.   

  1. Andrew, N.R., Hill, S.J., Binns, M., Bahar, M.H. and Ridley, E.V. (2013). Assessing insect responses to climate change: What are we testing for? Where should we be heading? Peer. J 1:e11 

  2. Ayres, M.P. (1993). Global change, plant defense, and herbivory. In Biotic Interactions and Global Changes (Kareiva, P.M., J.G. Kingsolver, and R.B. Huey, eds.). Sinauer Associates, Sunderland, MA, pp. 75-94.

  3. Ayres, M.P. and Lombardero, M.J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Tot. Env. 262:263-286.

  4. Casteel, C.L., Berenbaum, M.R. and Delucia, E. H. (2009). Does elevated carbon dioxide universally alter phytohormone signaling? Entomological Society of America annual meeting, December 14, 2009, Indianapolis. Castor, L.L., Ayers, J.E., McNabb, A.A. and Krause, R.A. (1975) Computerized forecast system for Stewart’s bacterial disease on corn. Plant Dis. Rep. 59: 533-536.

  5. Conte, Y.L. and Navajas, M. (2008). Climate change: impact on honey bee populations and diseases, Rev. Sci. Tech. Off. Int. Epiz., 27:499-510.

  6. Corbet, S.A., Fussell, M., Ake, R., Fraser, A., Gunson, C., Savage, A. and Smith, K. (1993). Temperature and the pollinating activity of social bees. Ecol. Entomol., 18: 17-30.

  7. Das, D.K., Singh, J. and Vennila, S. (2011). Emerging Crop Pest Scenario under the Impact of Climate Change. J. Agril. Phy.,11:13-20.

  8. Edward, B.M., Michelle, N.T., Caroline, S.A. and Richard, L.L. (2004). Divergent pheromone mediated insect behaviour under global atmospheric change Global Change Biology, 10: 1820–1824.

  9. Hamilton, J.G., Dermody, O., Aldea, M., Zangerl, A.R., Rogers, A., Berenbaum, M.R. and Delucia, E. (2005). Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ. Entomol., 34: 2479-485.

  10. Harrington, R., Fleming, R.A. and Woiwod, I.P. (2001). Climate change impacts on insect management and conservation in temperate regions. Can they be predicted? Agric. For. Meterol., 3:233-240. 

  11. IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis Geneva: IPCC, 996p. 

  12. Kiritani, K. and Morimoto, N. (2004). Invasive insect and nematode pests from North America. Global. Environ. Res. Assoc. Res. Initiatives. Environ. Stud., b:75–88.

  13. Kiritani, K. (2006). Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popln. Ecol., 48: 5-12.

  14. Petzoldt, C. and Seaman, A. (2007) Climate Change Effects on Insects and Pathogens. Fact Sheet.

  15. Prasannakumar, N. R., Subhash C. and Madan, P. (2012). Assessment of impact of climate change with reference to elevated CO2 on rice brown planthopper, Nilaparvata lugens (Stal.) and crop yield Cur. Sci., 103:1201-1205.

  16. Scott, N.J., Gregory, P.J., Mcnicol, J.W., Oodally, Y., Zhang, X. and Murray, P.J. (2010). Effects of soil conditions and drought on egg hatching and larval survival of the clover root weevil (Sitona lepidus). Appl. S. Ecol., 44: 75–79.

  17. Sharma, H. C. (2010). Global Warming and Climate Change: Impact on Arthropod Biodiversity,Pest Management, and Food Security Global Warming and Climate Change: Impact on Arthropod Biodiversity, Pest Management, and Food Security. In: National Symposium on Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture, 19-21 Nov 2010, Solan.

  18. Thomas, M.B. and Blanford, S. (2003). Thermal biology in insect parasite interactions. Trends Ecol. Evol., 18:344-350.

  19. Thomson, L.J., Macfadyen, S. and Hoffmann. A.A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biol.Cont. 52: 296-306.

  20. Tomokuni, M., Yasunaga, T., Takai, M., Yamashita, I., Kawamura, M. and Kawasawa, T. (1993). A field guide to Japanese bugs: terrestrial heteropterans (in Japanese). Zen-Nokyo, Tokyo.

  21. Vuorinen, T., Nerg, A.M., Ibrahim, M.A., Reddy, G.V.P. and Holopainen, J.K. (2004). Emission of Plutella xylostella induced compounds from cabbage grown at elevated CO2 and orientation behaviors of the natural enemies. Plant Physiol., 135:1984-1992. 

  22. Yamamura, K. and Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomology Zool., 33: 289-298.

  23. Yamamura, K., Yokozawa, M., Nishimori, M., Ueda, Y. and Yokosuka, T. (2006). How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields, Popl. Ecol., 48: p31.


Editorial Board

View all (0)