Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 36 issue 2 (june 2015) : 125-132

Technologies of microbial inoculation in rice - A Review

Mihirlal Roy*, Sibani Saha, Jhuma Das, Ramesh C. Srivastava
1Tripura State Council for Science & Technology, A.R.Complex, Agartala, Tripura-799 006, India.
Cite article:- Roy* Mihirlal, Saha Sibani, Das Jhuma, Srivastava C. Ramesh (2024). Technologies of microbial inoculation in rice - A Review. Agricultural Reviews. 36(2): 125-132. doi: 10.5958/0976-0741.2015.00014.8.
The conventional techniques for free cell inoculation, though inexpensive and easy to inoculate have limitations. Selection of carriers for the inoculants is crucial to support the storage of inoculants for marketing and the delivery of suitable amount of microorganism in good physiological condition. To overcome the limitations of scarcity of suitable carrier materials as well as to check the uncontrolled release of bacteria, encapsulated microorganism or alignate beads and irrigation based inocula delivery system have been developed. Apart from common inorganic, organic and polymeric compound used as carriers for microorganism delivery, research also being pursued to develop bacterial biofilms and nanoparticle based carriers. Idea of inoculation of bacteria into the plant cell suspension and their regeneration, though in infant stage, also seems to be one of the future possibilities. On the other hand, multi-strain inoculation claims to be better over single-strain inoculation. Critical and comprehensive analysis of the current knowledge of these technologies with emphasis on rice has been discussed in this review.
  1. Ahmad, A., Noaim, A.I. and Hamad, S. H. (2004). Effect of Bio-fertilization along with different levels of nitrogen fertilizer application on the growth and grain yield of Hasswi Rice (Oryza sativa L). Scientific J. King Faisal Univ. (Basic and Appl. Sci.), 5.2 : 215 – 224.
  2. Ahmad, M. and Kibret, M. (2014). Mechanism and applications of plant growth promoting rhizobacteria : current perspective. J. King Saud. Univ. Sci., 26 : 1-20.
  3. Albrecht, S.L., Okon, Y. and Lonnquist, L. and Burris, R.H. (1981). Nitrogen fixation by corn Azospirillum associations in a temperate climate. Crop Sci., 21 : 301 306.
  4. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G.V., Jolivet, J.P. and Wiesner, M.R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnol., 4(1) : 634 -641.
  5. Bailey, K.L., Boyetchko, S.M. and Langle, T. (2010). Social and economic drivers shaping the future of biological control ; a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52(3) : 221 – 229.
  6. Bashan, Y. (1986a). Alignate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol., 51: 1089-1098.
  7. Bashan, Y. (1986b). Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol. Biochem., 18 : 297 – 301.
  8. Bashan, Y., Levanony, H. and Ziv-Vecht, O. (1987). The fate of field-inoculated Azospirillum brasilense Cd. in wheat rhizosphere during the growing season. Can. J. Microbiol., 33 : 1074 – 1079.
  9. Bashan, Y and Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 36 : 591 – 608.
  10. Bashan, Y. and Cerrato, A. (1996). Bacterial inoculants for sustainable agriculture. In : New Horizon in Agriculture : Agroecology Sustainability and Development. (Eds.) R. Ferrera-Cerrato and J. Perez-Moreno. Colegio de Postgraduados, en Ciencias Agricolas Montecillo, Mexico.pp. 125-155.
  11. Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv., 16 : 729 – 770.
  12. Bashan, Y. and Holguin, G. (1997). Azospirillum – plant relationships : environmental and physiological advances (1990 – 1996). Can. J. Microbiol., 43 : 103 – 121.
  13. Bashan, Y., Hernandez, Juan-Pablo., Leyva, L.A. and Bacilio, M. (2002). Alignate microbeads as inoculants carriers for plant growth-promoting bacteria. Bio. Fertil Soils, 35 : 359 – 368.
  14. Bashan, Y. and de-Bashan, L.E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv. Agron., 108 : 77 – 136.
  15. Bashan, Y., de- Bashan, L. E., Prabhu, P. R. and Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology : formulations and practical perspectives (1998-2013). Plant Soil, 378 : 1-33.
  16. Bhattacharyya, P.N. and Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR) : emergence in agriculture. World J. Microbiol Biotechnol., 28 : 1327-1350.
  17. Beattie, G.A. (2006). Plant – associated bacteria : survey, molecular phylogeny, genomics and recent advances. In : Bacteria. Springer, Netherlands, pp. 1 – 56.
  18. Bijoy-Singh., Yadvinder-Singh., Sekhon, G.S. (1995). Fertlizer use efficiency and nitrate pollution of ground water in developing countries. J. Contaminant Hydrol., 20 : 167 – 184.
  19. Chowdhury, A.T.M.A. and Khanif, Y.M. (2001). Evaluation of the effects of nitrogen and magnesium fertilizer on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. J. Plant Nutr., 24 : 855 – 871
  20. Cong, P.T., Dung, T.D., Hien, N.T, Choudhury, A.T.M.A., Rose, M.T., Kecskes, M.L., Deaker, R. and Kennedy, R. (2011). Effects of a multistrain biofertilizer and phosphorus rates on nutrition and grain yield of paddy rice on a sandy soil in southern Vietnam. J. Plant Nutr., 34 : 1058-1069.
  21. De Datta, S.K. and Buresh, R.J. (1989). Integrated nitrogen management in irrigated rice. Advances Soil Sci., 10 : 143 – 169
  22. de Freitas, J.R. and Germida, J.J. (1990). A root tissue culture system to study winter wheat-rhizobacteria interaction. Appl. Microbiol. Bitechnol., 33 : 589 – 595.
  23. Digat, B (1991). A new encapsulation technology for bacterial inoculants and seed bacterization. In : Plant Growth-promoting Rhizobacteria : Progress and Prospects. (Eds.) C. Keel, B. Koller and G. Defago, 10BC / WPRS bul. 10BC / WPRS, Zurich. pp. 383 – 391.
  24. Dobereiner, J. (1997). A importancia da fixacao biologica de nitrogenio para a agricultura sustentavel. Biotecnologia ciencia and Desenvolvimento – Encarle especial., 1 : 2 – 3.
  25. Fages, J. (1990). An optimized process for manufacturing an Azospirillum inoculants for crops. Appl. Microbiol. Biotechnol., 32 : 473 – 478.
  26. Fages, J. (1992). An industrial view of Azospirillum inoculants : formulation and application technology. Symbiosis, 13 : 15 – 26.
  27. Fallik, E., Okon, Y. and Fischer, M. (1988). Growth response of maize roots to Azospirillum inoculation effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil. Biol. Biochem., 20 : 45.
  28. Fallik. E. and Okon, Y. (1996). Inoculants of Azospirillum brasilense : biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil. Biol. Biochem., 28 : 123 – 126.
  29. Fenice, M., Selbmann, L., Federici, F., Vassilev, N. (2000). Application of encapsulated Penicillium variable P16 in solubilisation of rock phosphate. Biors. Technol., 73 : 157 – 162.
  30. Garbet, S., Ryan, J. and Wood, M. (1998). Nitrogen and Water effects on wheat yield in a Mediterranean – type climate. II. Fertiliser-use efficiency with labeled nitrogen. Field Crop Res., 58 : 213 – 221.
  31. Gyurjan, L., Koranyi, P., Preininger, E., Varga, S.S. and Paless, G. (1995). Artificial Plant-Azotobacter symbiosis for atmospheric nitrogen fixation. In : Azospirillum and related Microorganisms. (Eds.) I. Fendrik, M. Del Gallo, J. Vanderleyden and M. Zamaroczy, Germany : Spring Verlag. pp. 401 – 413.
  32. Halvorson, A.D., Follett, R.F., Bartolo, M.E. and Schweissing, F.C. (2002). Nitrogen fertilizer use efficiency of furrow- irrigated onion and corn. Agron J., 94 : 442 – 449.
  33. Hasan, M., Bano, A., Hassan, S.G., Iqbal, J., Awan, U., Rong-ji, D. and Khan, K.A. (2014). World Appl. Sciences J., 31 : 1734-1743.
  34. Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion : a review. Ann. Microbiol., 60 : 579-598.
  35. Hegazi, N.A., Fayez, M., Amin, G., Hamza, M.A., Abbas, M., Youssef, H. and Monib, M. (1998). Diazotrophs associated with non-legumes grown in sandy soils. In : Malik, K.A., Mirza, M.S. and Ladha, J.K. (Eds). Nitrogen Fixation with Non-legumes. Kluwer Academic Publishers, Dordrecht. pp. 209 – 222.
  36. Islam, and Bora, L.C. (1998). Biological management of bacterial leaf blight of rice (Oryza sativa) with plant growth promoting rhizobacteria. Ind. J. Agric. Sci., 68 : 798 – 800.
  37. Jayasinghearachchi, H.S. and Seneviratne, G. (2004). A bradyehizobial –Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol. Fertl. Soils, 40 : 432 -434.
  38. Kalininskaya, A. (1988). The influence of different forms of combined nitrogen on nitrogen – fixing activity of Azospirillum the Rhizosphere of rice plants. In : Dev. Soil Sci., Amsterdam, 18, 283.
  39. Kannaiyan, S., Govindarajan, K. and Lewin, H.D. (1980). Effect of foliar spray of Azotobacter chroococcum on rice crop. Plant and Soil, 56 : 487 – 490.
  40. Kennedy, I.R., Chowdhury, A.T.M.A. and Kecskes, M.L (2004). Non-symbiotic bacterial diazotrophs in crop farming systems :can their potential for plant growth promotion be better exploited ? Soil. Biol. Biochem., 36 : 1229 – 1244.
  41. Ladha, J.K. and Reddy, P.M. (Eds.) (2000). The quest for nitrogen fixation in rice. In : Proc. of the Third Working Group Meeting of Assessing Opportunities for Nitrogen Fixation in Rice, 9 – 12 Aug. 1999, Los Banos, Laguna, Philippines, Makati City (Philippines) : International Rice Research Institute . p. 354.
  42. Lodh, A. and Srivastava, R.C (2008). Effect of seed – dressing treatment by Azospirillum brasilense on growth, photosynthetic pigments and nitrate reductase activity in Oryza sativa. J. Appl. Biosci., 32 (2) : 172 – 176.
  43. Malik, K.A., Mirza, M.S., Hassan, U., Mechnaz, S., Rasul, G., Haurat, J., Balley, R. and Normand, P. (2002). The role of plant-associated beneficial bacteria in rice-wheat cropping system. In : Biofertilizers in Action. (Eds.) I.R. Kennedy and A.T.M.A. Chowdhury, Rural Industries Research and Development Corporation, Canberra. pp. 73 – 83.
  44. Malusa, E., Sas-Paszi, L. and Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific World J., doi : 10.1100/2012/491206.
  45. Martinez-Viveros, O., Jorquera, M.A., Crowley, D.E., Gajardo, G. and Mora, M.L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr., 10(3) : 293 – 319.
  46. Millet, E. and Feldman, M. (1986). Yield response of a common spring wheat cultivar to inoculation with Azospirillum brasilense at various levels of nitrogen fertilization. Plant and Soil. 80 : 255 - 259.
  47. Miransari, M. (2014). Plant growth promoting rhizobacteria. J. Plant Nutr., 37 : 2227-2235.
  48. Nandal, M. and Hooda, R. (2013). Plant growth promoting rhizobacteria : a review article. International J. Curr. Res., 5 (12) : 3863-3871.
  49. Nguyen, T.H., Kennedy, I.R. and Roughley, R.J. (2002). The response of field grown rice to inoculation with a multistrain biofertilizer in the Hanoi district, Vietnam. In : Biofertilizers in Action. (Eds). I.R. Kennedy and A.T.M.A. Chowdhury, Rural Industries Research and Development Corporation, Canberra. pp. 37 – 44.
  50. Nguyen, (2003). The positive yield response of field-grown rice to inoculation with a multi-strain biofertilizer in the Hanoi area, Vietnam. Symbiosis, 34 : 1 – 15.
  51. Okon, Y. (1985). Azospirillum as a potential inoculums for agriculture. Trends Biotechbol. Academic., 3 : 223 – 228.
  52. Okon, Y. and Hadar, Y. (1987). Microbial inoculants as crop-yield enhances. CRC Crit. Rev. Biotechnol., 6 : 61 – 85.
  53. Okon, Y. and Labandera – Gonzalez, C.A. (1994). Agronomic applications of Azospirillum : an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem., 26 : 1591 – 1601.
  54. Okon, Y. and Itzigsohn, R. (1995). The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol. Adv., 13 : 415 – 424.
  55. Patil, P.L. and Patil, S.P. (1984). Uptake of nitrogen by cotton inoculated with Azotobacter. J. Maharastra Agricultural Universities, 9 : 171 – 172.
  56. Park, J.K. and Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnol Adv., 18 : 303 – 319.
  57. Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P. and Maddox, I.S. (2005). Biofilm reactors for industrial bioconversion processes : employing potential of enhanced reaction rates. Microb. Cell Factories, 4 : 24 -26.
  58. Rathore, P. ( 2014). A review on approach to develop plant growth promoting rhizobacteria. International J. Recent Scientific Res., 5 (2) : 403-407.
  59. Reetha, D., Stella, D. and Sundaram, M.D. (2002). Effect of Azospirillum inoculation and growth regulators application on Sunflower (Helianthus annuus L.). J. curr. Sci., 2(1) : 65 – 68
  60. Reddy, C. A. and Saravanan, R.S. (2013). Polymicrobial muli-functional approach for enhancement of crop productivity. Adv. Appl. Micribiol., 82 : 53 – 113.
  61. Roy, M.L., Dey, B. and Srivastava, R.C. (2008). Combined effect of Basal application of biofertilizers and chemical fertilizers on nitrate reductase activity and biomass of rice plants. J. Hill Res., 21 (1) : 26 – 28.
  62. Roy, M.L. and Srivastava, R.C. (2009a). Influence of soil application of growth-promoting diazotrophs and chemical fertilizers on biochemical parameters and biomass of rice cultivar of Tripura. Proc. Nat. Acad. Sci. India, Sect. B., 79 (III) : 283 – 288.
  63. Roy, M.L. and Srivastava, R.C. (2009b). Inoculation experiment of Azospirillum brasilense as supplement of urea nitrogen for aman rice production in Tripura. Vegetos, 22(2) : 39 – 49.
  64. Roy, M.L. and Srivastava, R.C. (2009c). Effect of integrated use of different levels of nitrogen fertilizer and bio-inoculants on Oryza sativa L. in terms of total nitrogen and total soluble sugar in leaves. J. Plant. Biol., 36 (1&2) : 1- 4.
  65. Roy, M.L. and Srivastava, R.C. (2010a). Single and co-inoculation effects of different biofertilizers on growth, in vivo nitrate reductase activity and soluble protein in Oryza sativa L. J. Appl. Biosci., 36 (1) : 101 – 104.
  66. Roy, M.L. and Srivastava, R.C. (2010b). Influence of Azospirillum brasilense on biochemical characters of rice seedlings. Indian J. Agric. Res., 44 (3) : 183 – 188.
  67. Roy, M.L. and Srivastava, R.C. (2011). Plant growth promotion potential of Azotobacter chroococcum on growth, biomass, leaf are index and yield parameters of aman rice in Tripura. Ind. J. Agric. Res., 45 (1) : 52 – 58.
  68. Sadasivan, L. (1986). Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric. Wastes., 17 : 306 – 310.
  69. Saharan, B.S. and Nehra, V. (2011). Plant growth promoting rhizobacteria : a critical review. Life Sci. Med.Res., 21 : 1-30.
  70. Sattar, M.A., Rahman, M.F., Das, D.K. and Choudhury, T.M.A.A. (2008). Prospects of using Azotobacter, Azospirillum and cyanobacteria as supplements of urea nitrogen for rice production in Bangladesh. In : Proceedings of ACIR, NO – 130. pp. 59 – 66.
  71. Seneviratne, G, Zavahir, J.S., Bandara, W.M.M.S. and Weerasekara, M.L.M.A.W. (2008). Fungal–bacterial biofilms : their development for novel biotechnological applications. World J. Microbiol. Biotechnol., 24(6) : 739-743.
  72. Shaheen, A.M., Fatma, A. R., Omina, M. S. and Ghoname, A.A. (2007). The Integrated use of bioinoculants and chemical nitrogen fertilizer on growth, yield and nutritive value of two Okra (Abelmoschus esculentus L) cultivars. Aust.J. Basic Appl.Sci., 1(3) : 307 – 312
  73. Sharma, A.K. (2003). Microbial inoculants for Nitrogen Fixation. In : Biofertilizers for sustainable Agriculture. Agrobios (India), Jodhpur. pp. 85 – 155.
  74. Shrestha, R.K. and Ladha, J.K. (1998). Nitrate in ground water and integration of nitrogen-catch crop in rice-sweet pepper cropping system. Soil. Sci. Soc. America J., 62 : 1610 – 1619.
  75. Singh, M.S., Devi, R.K.T. and Singh, N.I. (1999). Evaluation of methods for Azotobacter application on the yield of rice. Ind. J. Hill. Farming, 12 : 22 – 24.
  76. Smith, R.L., Schank, S.C, Milam, J.R. and Baltensperger, A.A. (1984). Response of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol., 47 : 1331 – 1336.
  77. Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R. and Ajayan, P.M. (2004). Carbon nanotube filters. Nature Materials, 3(9) : 610- 614.
  78. Steddom, K., Menge, J.A., Crowley, D.E. and Borneman, J. (2002). Repetitive applications of the biocontrol agent Pseudomonas putida 06909 – rif / nal and effects on Phylophthora parasitica in citrus orchards. Phytopathol., 92(8) : 850 – 856.
  79. Stephens, J. H. G. and Rask, H.M. (2000). Inoculation production and formulation. Field Crops Res., 65 : 249- 258.
  80. Sun, Y., Furusaki, S., Yamauchi, A. and Ichimura, K. (1989). Diffusivity of oxygen into carriers entrapping whole cells. Biotechnol. Bioeng., 34 : 55 – 58.
  81. Uthiraselvam, M., Ravikumar, S., Abdeen, S., Selvam, M.B. and Fathima, S.A. (2012). Effect of multiple inoculation of magnetotactic bacteria on along with nitrogen fixers and phosphate solubilisers on the growth and yield of agriculture crop Oryza Sativa. J. Microbiol. Biotechnol. Res., 2 (5) : 758-765.
  82. Wairiu, M. and Lal, R. (2003). Soil organic carbon in relation to cultivation and top soil removal on sloping lands of Kolombangara, Solon Islands. Soil and Tillage Res., 70 : 19 – 27.
  83. Williams, R.L and Kennedy, I.R. (2002). A model for testing the effectiveness of biofertilizer for Australian rice production. In : Biofertilisers in Action. (Eds.) I.R. Kennedy and A.T.A.A. Chowdhury, Rural Industries Research and Development Corporation, Canberra. pp. 112 – 114.
  84. Witter, L (1996). Immobilized microbial cells. In : Physical Chemistry of Food Processes. (Eds.) I.C. Baianu, H. Pessen, T.F. Kumosinski, New York : Van Nostrand Reinhold. Pp. 475 – 486.
  85. Young, Chiu-Chung., Rekha, P.K., Lai, Wei-An and Arun, A.B. (2006). Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotech. Bioeng., 95 (1) : 76 – 83.
  86. Zhulin, I.B. and Armitage, J.P. (1992). The role of taxis in the ecology of Azospirillum. Symbiosis, 13 : 199 – 206.
  87. Zohar-Perz, C., Ritte, E., Chernin, L. Chet, I. and Nussinovitch, A. (2002). Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate-based carriers. Biotechnol. Prog., 18 : 1133 – 1140.

Editorial Board

View all (0)