Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 35 issue 2 (june 2014) : 122-129


1Centre of Food Science and Technology, Banaras Hindu University, Varanasi - 221 005, Indi
Cite article:- 10.5958/0976-0741.2014.00089.0 (2024). EXOPOLYSACCHARIDES OF LACTOBACILLI AND THEIR USE IN IMPROVING THE TEXTURE OF FERMENTED DAIRY PRODUCTS- A REVIEW. Agricultural Reviews. 35(2): 122-129. doi: 10.5958/0976-0741.2014.00089.0.
Lactobacilli have the ability to produce a wide range of exopolysaccharides (EPS) exhibiting a diversity of structures. EPS are classified, according to their composition into homopolysaccharides (HoPS) and heteropolysacharides (HePS). One of the most important applications is use of EPS as texturizing and stabilizing agent in fermented dairy products. Now a days, modern consumers focus towards safe and healthy food without additives, which develops a scope of new perspective of Lactobacilli EPS. The GRAS (Generally Recognized as Safe) and probiotic status of some Lactobacilli give them more preference for consumable EPS production. The major challenge limiting their industrial expansion is their low yields of production and the validation of their health benefits. Moreover, the texturing role of these exopolysaccharides, notably in dairy products, is actually a controversial issue. The present review reports on the perspective, recent development, major challenges and ways to increase the application of Lactobacilli EPS.
  1. Amatayakul, T. Halmos, A.L. Sherkat F. and Shah, N.P (2006). Physical characteristics of yogurts made using exopolysaccharide-producing starter cultures and varying casein to whey protein ratios. Int. Dairy J, 16: 40–51.
  2. Aslim, B. Zehra, N.Y. Beyatli , Y. and Mercan, N. (2005). Exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World J. Microbiol. Biotechnol, 21:673–677.
  3. Badel, S. Bernardi T. and Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 29: 54-66.
  4. Behare, P.V. Singh, R. Kumar, M. Prajapati, J.B. and Singh, R.P (2009). Exoplysaccahrides of lactic acid bacteria:a review. J. Food Sci. Technology, 46: 1-11.
  5. Bouazzaoui, K. and LaPointe, G. (2006). Use of antisense RNA to modulate glycosyltransferase gene expression and exopolysaccharide molecular mass in Lactobacillus rhamnosus. J. Microbiol. Meth, 65: 216–225.
  6. Bouzar, F. Cerning, J. and M. Desmazeaud. (1996). Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. J. Dairy Sci, 79:205–211.
  7. Briczinski, E.P. and Roberts. R.F (2002). Production of an exopolysaccharide-containing whey protein concentrate by fermentation of whey. J. Dairy Sci, 85:3189–3197.
  8. Cerning, J. Renard, C.M. Thibault, J.F. Bouillanne,C. Landon, M. and Desmazeaud, M. (1994). Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol, 1960: 3914–9.
  9. Chabot, S. Yu, H.L. L. De Leseleuc, Cloutier, D. VanCalsteren M.R. and Lessard. M. (2001). Exoplysaccharide from Lactobacillus rhamnosus RW-9595M stimulate TNF,IL-6and IL-12 in human and mouse cultured immmunocompetent cells and TNFg in mouse splenocytes. Lait, 81: 693-697.
  10. Christian, C. S.; Dusko Ehrlich and Maguin. E.(2000). Physiological Study of Lactobacillus delbrueckii subspp. bulgaricus strains in a novel chemically defined medium. Appl. and Env. Microbiol, 66: 5306-5311.
  11. Coeuret, V. Dubernet, Bernardeau, M. Gueguen M and Vernoux. J. P (2003). Isolation, characterization and i dentification of lactobacilli focusing on cheeses and others dairy products. Lait, 83: 269–306.
  12. Dal Bello, Walter, F. J. Hertel C. and Hammes.W.P. (2001). In vitro study of prebiotics properties of levan type exopolysaccharides from lactobacilli and non digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol, 24: 232–237.
  13. De Vuyst, L. De Vin F. and Kamerling. J. P. (2007). Exopolysaccharides from lactic acid bacteria. In Comprehensive Glycoscience (Eds) pp. 477–518. Elsevier. Oxford, London:
  14. Degeest, B. Janssens B. and De Vuyst. L. (2001). Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: production kinetics, enzyme activities and EPS yields. J. Appl .Microbiol, 91: 470–477.
  15. Duboc, P and Mollet. B. (2001). Applications of exopolysaccharides in the dairy industry. Int. Dairy J, 11:759–68.
  16. Dupont, I. Roy D. and Lapointe, G. (2000). Comparison of exoplysaccharide production by strains of Lactbacillus rhamnosus and Lactbacillus paracasei grown in chemically defind medium and milk. J. Ind. Microbial. Biotechnol, 24:251-255.
  17. Faber, E.J. Kamerling J.P. and Vliegenthart, J.F.G. (2001). Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subspp. bulgaricus 291. Carbohydrate Res, 331:183–194.
  18. German, B. Schiffirin, E. Reniero, R. Mollet, B. Pfeifer A. and Nesser. J. R. (1999). The development of functional foods: lessons from gut. Trends in Biotechnol, 17: 492-499.
  19. Hassan, A. N., T. Qvist, K. B. (2003). Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J. Dairy. Sci, 86:1632–1638.
  20. Hassan, A.N. Frank J.F. and Qvist. K. B. (2002). Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy. J. Dairy Sci, 85: 1705–1708.
  21. Jolly, L. and Stingele. F. (2001). Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int. Dairy J, 11:733–745.
  22. Jolly, L. Vincent, S.J.F. Duboc, P. and Neeser. J. R. (2002). Exploiting exopolysaccharides from lactic acid bacteria. Antonie Leeuwenhoek. 82: 367–374.
  23. Kimmel, S.A. Roberts R.F and Ziegler. G. R. (1998). Optimization of exopolysaccharide production by Lactobacillus delbrueckii subspp. bulgaricus RR grown in a semi defined medium. Appl. Environ. Microbiol, 64: 659–664.
  24. Kitazawa, H. T. Harata, Uemura, J. Saito,T. Kaneko, T. and Itoh. T. (1998). Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phophopolysaccharide from Lactobacillus delbrueckii spp.bulgaricus. Int. J. of Food Microbiol, 40: 169-175.
  25. Kodali, V.P. Das, S. and Sen, R. (2009). An exoplysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity. Food Res. Int, 42: 695-699.
  26. Lamothe, G.T. Jolly, L. and Mollet. B. (2002). Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subspp. bulgaricus. Arch. Microbiol, 178: 218–228.
  27. Landersjo C. Yang, Z. Huttunen, E. and Widmalm. G. (2002). Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules, 3: 880-884
  28. Lin, T.Y and Chang Chien. M. F. (2007). Exopolysaccharide production as affected by lactic acid bacteria and fermentation time. Food Chem, 100:1419–23
  29. Litopoulou-Tzanetaki, E. and Tzanetakis. N. (1999). Fermentedmilks: range of products. In R. K. Robinson (Ed.), Encyclopedia of Food Microbiology. pp. 774–784. Academic Press: San Diego.
  30. Macedo, M.G. Lacroix, C. Gardner, N.J. and Champagne. C. P. (2002). Effect of medium supplementation nexopolysaccharide production by Lactobacillus rhamnosus RW-9595 M in whey permeate. Int. Dairy J. 12: 419–26.
  31. Maeda, H. Zhu, X.; Omura, K.; Suzuki, S. and Kitamura. S. (2004a). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors. 22: 197–200.
  32. Maeda, H. X. Zhu, X. Suzuki, S. Suzuki, K. and Kitamura. S. (2004b). Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WB-2B. J. Agric. Food Chem, 52: 5533–5538.
  33. Peant, B. LaPointe, G. Gilbert, C. Atlan, D. Ward, P. and Roy, D. (2005). Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology, 151: 1839–1851.
  34. Perry, D.B. Mc Mahon, D. J. and Oberg. C. J. (1997). Effect of exopolysaccharide-producing cultures on moisture retention in low fat mozzarella cheese. J. Dairy Sci, 80:799–805.
  35. Petry, S. Furlan, M.J. Crepeau, J. Cerning and Desmazeaud, M. (2000). Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subspp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiololgy, 66: 3427–3431.
  36. Pham, P.L. Dupont, I Roy, D. Lapointe, G. and Cerning. J.(2000). Production of exopolysaccharides by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiology, 66:2302–10.
  37. Pigeon, R. M. Cuesta, E. P. and Gilliland. S. E. (2002). Binding of free bile acids by cells of yoghurt starter culture bacteria. J. Dairy Sci, 85: 2705-2710.
  38. Purwandari, U. Shah, N. P. and Vasiljevic. T. (2007). Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int. Dairy J, 17: 1344–1352.
  39. Rimada, P.S and Abraham. A.G. (2006). Kefiran improves rheological properties of glucono-ä-lactone induced skim- milk gels. Int. Dairy J, 16: 9-33.
  40. Rodrigues, K.L. Carvalho, J.C.T. and Schneedorf. M. J. (2005). Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacol, 13: 485–492.
  41. Ruas-Madiedo, P. Hugenholtz, J. and Zoon. P. (2002). An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J, 12: 163–71.
  42. Shene, C and Bravon. S.(2007). Whey fermentation by Lactobacillus delbrueckii subsp. bulgaricus for exopolysaccharide production in continuous culture. Enzyme Microb. Technology, 40:1578–84.
  43. Sutherland, I.W. (2001). Microbial polysaccharides from Gram negative bacteria. Int. Dairy J, 11: 663–74.
  44. Sutherland, I.W. (1972). Bacterial exopolysaccharides. Advances in Microbial. Physiol, 8: 143-213.
  45. Sutherland, I.W. (2007). Bacterial exopolysaccharides. In: Comprehensive Glycoscience (Eds) Kamerling. J.P. pp. 521– 557. Oxford, London: Elsevier.
  46. Torino, M.I. Mozzi, F. and De Valdez. F. (2005). Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807. Appl. Microbiol. Biotechnol, 68: 259-265.
  47. Van Geel-Schutten, G.H. Faber, E.J. Smit, K. Bonting, E.K. Smith, M.R. andTen Brink. B.(1999). Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiology, 65:3008–14.
  48. Vinderola, G. Perdigón, G. Duarte, J. Farnworth, E. and Matar. C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36:254–60.
  49. Welman, A.D. and Maddox. I. S. (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology, 21:269–74.

Editorial Board

View all (0)