Brahmi (*Bacopa monnieri*): Up-to-date of memory boosting medicinal plant: A review

Natthawut Charoenphon, Nanthida Anandsongvit¹, Piya Kosai, Kanjana Sirisidthi, Niwat Kangwanrangsan and Wannee Jiraungkoorskul*²

Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Received: 19-10-2015 Accepted: 22-12-2015 doi: 10.18805/ijare.v50i1.8582

ABSTRACT

Bacopa monnieri, Family: Plantaginaceae, known as water hyssop, herb of grace or Indian penny wort, is one of the traditional medicinal plants in Ayurvedic medicine, where it is also called Brahmi, a name derived from Brahma, the creator God of the Hindu Pantheon. It is now being widely promoted to enhance memory, learning and concentration and also to treat anxiety, depression, and systemic disorders like cardiovascular, gastrointestinal, hepatic, neurological and also respiratory problems. Further, Brahmi has been shown to possess anticancer, anti-diabetic, anti-inflammatory, anti-microbial and antioxidant properties. Its phytochemical substances are alkaloids, flavonoids, glycosides, saponins, and the important constituents such as bacosides, bacopasides, and bacopasaponins, which all of these contribute to its remedial properties. This article provides a brief overview of the memory boosting activity of brahmi, (*B. monnieri*), to further provide an up-to-date review showing its importance especially, memory boosting.

Key words: Bacoside, *Bacopa monnieri*, Brahmi, Memory boosting, Neurological protective.

Neurodegenerative diseases are a group of chronic, progressive disorders of the central nervous system, characterized by the gradual loss of neurons in the brain and spinal cord, affecting mental abilities or motor abilities like Alzheimer’s disease, Parkinson’s diseases, and related disorders (Ramanan and Saykin, 2013; Brettschneider *et al.*, 2015; Medina and Evans, 2015). It was estimated that by 2020, neurodegenerative diseases will be the eighth leading cause of death in developed countries, and by mid-century neurodegenerative diseases will be the world’s second leading cause of death overtaking cancer (Menken *et al.*, 2000). National estimates, one-third or 32 % of people age 85 and older in the United States has Alzheimer’s disease (Hebert *et al.*, 2013). Currently available drug treatments decelerate the progression of the disease, provide symptomatic relief, but fail to achieve a definite cure (Connolly and Lang, 2014; Kumar and Ekavali, 2015). There are a number of foods (plants, herbs, fruits, and vegetables) and supplements that are known to enhance the brain activity as “Memory Boosting Foods or Supplements” (Othman *et al.*, 2015; Venkatesan *et al.*, 2015) for the example Indian traditional memory enhancing herbs (*Bhownik* *et al.*, 2010; *Jatwa* *et al.*, 2014), Chinese traditional memory enhancing herbs (*Ho* *et al.*, 2005), Korean East Asian traditional cognitive impairment herbs (*Kumar* *et al.*, 2013), Japanese traditional memory and learning-enhancing herbs medicine (*Nakamura* *et al.*, 2006), Europe traditional cognitive impairment herbs (Eckert, 2010). According to the National Medicinal Plants Board report, the annual market demand for Brahmi, *Bacopa monnieri* is around 1,000 tones in year 2000, which increased many fold due to its potential uses in Ayurvedic medicine to treat variety of diseases (*Tripathi* *et al.*, 2012). In recent years, *B. monnieri* has received much attention worldwide due to its wide spectrum of pharmacological activities. The numbers of scientific literature during 2000-2015 showed 529; 330; and 8,930 hits on “Bacopa” according to the ScienceDirect, PubMed, and Google Scholar database, respectively, search on October 18, 2015. Among them are book, classical article, clinical trials, journal article, patent application and reviews.

Taxonomical classification: The taxonomy of *B. monnieri* is in the Kingdom (Plantae); Subkingdom (Viridiplantae); Infrakingdom (Streptophyta); Division (Tracheophyta); Subdivision (Spermatophytina); Class (Magnoliopsida); Subclass (Asteridae); Superorder (Asteranae); Order (Lamiales); Family (Plantaginaceae); Genus (Bacopa); Species (*B. monnieri*) (ITIS, 2015).

Nomenclature: *B. monnieri* is native in India, Bangladesh and Southern Asia, and also grows in Australia, Europe, and Africa. The vernacular name of *B. monnieri* is also known as Indian pennywort, water hyssop (English), farfakh (Arabic), brahmi (Assamese), aaghabini (Bengali), jia ma chi xian (Chinese), petite bacopa (French), kleine fettblatt

¹Corresponding author’s e-mail: pathobiologymu@gmail.com.

²Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
(German), baam (Gujrati), psheta srua (Hebrew), adha birni (Hindi), bakopa (Japanese), jala brahmi (Kannada), barna (Malayalam), ghola (Marathi), medha giree (Nepalese), bakopa drobnolistna (Polish), brahmibuti (Punjabi), adha birni (Sanskrit), ahaznda poozndu (Tamil), neeri sambraani mokka (Telugu), phrommi (Thai), and rau dang bien (Vietnamese) (PMP, 2014).

Plant description: *B. monnieri* is the small smooth creeping fleshy plant with the numerous branches. It grows to a height of 60-90 cm and its branches are 5-35 cm long (Fig. 1). Roots are thin, wiry, small, branched creamish-yellow. Stem is thin, green or purplish green, about 1-2 mm thick, soft, nodes and internodes prominent, glabrous; taste, slightly bitter. Leaves are stalkless, simple, opposite, decussate, green, sessile, 8-15 mm long and 4 mm wide, ovate-oblong, taste slightly bitter. Flowers are small, axillary and solitary, five petaled white, purple, pink or pale violet in color, pedicels 6-30 mm long, bracteoles shorter than pedicels. Fruits are capsules up to 5 mm long, ovoid, glabrous and sharp at apex (Trivedi Manisha et al., 2011).

Phytochemical substances: The extract of *B. monnieri* was revealed the presence of tannins, flavonoids (Singh, 2012; Pant et al., 2015), glycosides (Sivaramakrishna et al., 2005; Tothiam et al., 2011), terpenoids, saponins (Zhou et al., 2007; Phrompittayarat et al., 2007; 2008), bacosides, bacopasides (Agrawal et al., 2006), bacopasaponins (Mahato et al., 2000), and steroids. The major chemical constituents isolated and characterized from *B. monnieri* are dammaranes of triterpenoid saponins with pseudojujubogenin glycosides or jujubogenin glycosides (Chakravarty et al., 2001, 2003; Hou et al., 2002; Kamonwannasit et al., 2008).

Traditional uses: From review literatures that regarding the traditional uses or phytochemical properties of *B. monnieri* are shown in Table 1.

Neuroprotective activity: The active constituents responsible for *B. monnieri*’s cognitive effects are bacosides A and B, moreover, triterpenoid saponins are responsible to enhance nerve impulse transmission (Mahato et al., 2000; Hou et al., 2002; Chakravarty et al., 2001; 2003). The bacosides also aid in repair of damaged neurons by enhancing kinase activity, neuronal synthesis, restoration of synaptic activity, and nerve impulse transmission (Singh and Dhawan, 1997). Peth-Nui et al. (2012) demonstrated that *B. monnieri* suppresses acetylcholinesterase activity resulting in enhanced...
TABLE 1: The traditional uses or phytochemical properties of B. monnieri

<table>
<thead>
<tr>
<th>Phytochemical properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antianxiety activity</td>
<td>Chatterjee et al., 2010</td>
</tr>
<tr>
<td>Anticancer activity</td>
<td>Peng et al., 2010; Ghosh et al., 2011a; Patil et al., 2014</td>
</tr>
<tr>
<td>Antidepressant activity</td>
<td>Shen et al., 2009; Hazra et al., 2012; Sindhu et al., 2014; Ramana Murty Kadali et al., 2014; Mannan et al., 2015</td>
</tr>
<tr>
<td>Antidiabetic activity</td>
<td>Ghosh et al., 2008; Ghosh et al., 2011b; Prasenjit et al., 2014</td>
</tr>
<tr>
<td>Antihypertensive activity</td>
<td>Kamkaew et al., 2011; Onsa-ard et al., 2012</td>
</tr>
<tr>
<td>Anti-lipidemia activity</td>
<td>Kamesh et al., 2012; Mitra, 2014</td>
</tr>
<tr>
<td>Anti-inflammatory activity</td>
<td>Channa et al., 2006; Joshi et al., 2014</td>
</tr>
<tr>
<td>Antimicrobial activity</td>
<td>Rajashekarappa et al., 2008; Udgire and Pathade, 2012; Joshi et al., 2013</td>
</tr>
<tr>
<td>Antioxidant activity</td>
<td>Mohan et al., 2011; Meena et al., 2012; Nadagaon et al., 2013; Subashri and Pillai, 2014</td>
</tr>
<tr>
<td>Hepatoprotective activity</td>
<td>Gudipati et al., 2012; Shahid and Subhan, 2014</td>
</tr>
<tr>
<td>Gastrointestinal protective activity</td>
<td>Subhan et al., 2010; Afjalus et al., 2012</td>
</tr>
<tr>
<td>Neuroprotective activity</td>
<td>Ubundit et al., 2010; Aguier and Borowski, 2013</td>
</tr>
</tbody>
</table>

cholinergic function, which in turn enhances attention and memory processing and increases working memory in elderly people.

Alzheimer’s disease: Goswami et al. (2011) evaluated the effect of 300 mg B. monnieri (Bacognize®) orally twice a day for 6 month in the newly diagnosed patients of Alzheimer’s disease in the Psychiatry Outdoor Patient Department in India. Mean age of 39 patients who completed the study was 65.23 years. Study patients showed statistically significant improvements in various components of Mini Mental State Examination Scale including orientation of time, place and person, attention and in their language component in terms of reading, writing and comprehension. The patients involved in this trial also reported improvement in their quality of life, and decrease in the irritability and insomnia. In 2013, Kunte and Kuna studied the neuroprotective properties of 100 mg B. monnieri per kg body weight for 180 days on memory deficits and biochemical changes in ATPase system of Alzheimer’s disease induced mice. Their results revealed that B. monnieri showed positive effects on body weight, learning skills, memory and concentration, moreover, B. monnieri could revert all the constituents of ATPase system to normal levels in Alzheimer’s disease induced mice. So, Kunte and Kuna concluded that B. monnieri had potential compounds which can prevent the learning and memory deficits effectively; and to maintain ion gradients across biological membranes, thus confer significant neuroprotection against Alzheimer’s disease by stabilizing the structural and functional integrity of the membrane.

Parkinson’s disease: Jadiya et al. (2011) studied the effect of B. monnieri on two different strains of Caenorhabditis elegans, a transgenic model expressing “Human” Parkinson’s disease. The results showed that B. monnieri reduced alpha synuclein aggregation, prevented dopaminergic neurodegeneration and restored the lipid content in nematodes, thereby proving its potential as a possible anti-Parkinsonian agent. Swathi et al. (2012) examined the neuroprotective effect of B. monnieri in rotenone induced Parkinson’s disease with particular reference to glutamate metabolism in different regions of rat brain. Glutamine content and activity levels of glutamate dehydrogenase, glutamine synthetase were significantly depleted and elevated glutaminase activity was found in different brain regions of rat during rotenone induced Parkinson’s disease when compared to control rats. Treatment with B. monnieri caused significant elevation in glutamine content and the activity levels of glutamate dehydrogenase, glutamine synthetase and depletion in glutaminase activity in different brain regions of rats when compared to induced Parkinson’s disease rats. So the results of Swathi et al. (2012) suggest the ability of B. monnieri extract to modulate glutamate metabolism in different brain regions of induced rodent model of Parkinson’s disease.

Clinical Trial: A number of human clinical studies have examined the effects of Brahmi, most of which have focused on its cognitive enhancing activity. Roodenrys et al. (2002) reported that 76 adults aged between 40-65 years took part in a double-blind randomized, placebo control study in which various memory functions were tested and levels of anxiety measured. The results show a significant effect of the Brahmi on a test for the retention of new information. Follow-up tests showed that the rate of learning was unaffected, suggesting that Brahmi decreased the rate of forgetting of newly acquired information. Tasks assessing attention, verbal and visual short-term memory and the retrieval of pre-experimental knowledge were unaffected. Questionnaire measures of everyday memory function and anxiety levels were also unaffected. Barbhaiya et al. (2008) evaluate the efficacy and tolerability of B. monnieri (BacoMind®) in 65 adults aged between 50-75 years with a single oral dose of 450 mg daily for the duration of 12 weeks. The neuropsychological tests revealed that BacoMind improved performance in tests associated with attention and verbal memory such as digit span backward test, list learning delayed recall test, paired associates dissimilar delayed recall test and in visual retention-I test.
In conclusion, Brahmi, *Bacopa monnieri*, may serve as the memory boosting alternative source for the development of new neurological agent due to its biological activities. Recent researches were found that Brahmi as a viable medicine for improving mental health and the prevention and treatment of age related cognitive decline. Because of the source of various chemical constituents which are used for the treatment of many fatal or life threatening diseases, Brahmi is quite help the body in numerous ways.

ACKNOWLEDGMENTS

This review article was funded in part by the Thailand Research Fund and the Commission on Higher Education: Research Grant for Mid-Career University Faculty. Thanks should be addressed to the members of the Fish Research Unit, Department of Pathobiology, Faculty of Science, Mahidol University for their support. The author also many thanks to anonymous referees and editor for their perceptive comments on, and positive criticism of this review article.

REFERENCES

